
Overview Package Class Tree Deprecated Index Help
 PREV PACKAGE NEXT PACKAGE FRAMES NO FRAMES

Package java.lang

Interface Summary

Runnable
The Runnable interface should be implemented by any class whose instances are
intended to be executed by a thread.

Class Summary
Boolean The Boolean class wraps a value of the primitive type boolean in an object.

Byte The Byte class is the standard wrapper for byte values.

Character The Character class wraps a value of the primitive type char in an object.

Class
Instances of the class Class represent classes and interfaces in a running Java
application.

Integer The Integer class wraps a value of the primitive type int in an object.

Long The Long class wraps a value of the primitive type long in an object.

Math The class Math contains methods for performing basic numeric operations.

Object Class Object is the root of the class hierarchy.

Runtime
Every Java application has a single instance of class Runtime that allows the
application to interface with the environment in which the application is running.

Short The Short class is the standard wrapper for short values.

String The String class represents character strings.

StringBuffer A string buffer implements a mutable sequence of characters.

System The System class contains several useful class fields and methods.

Thread A thread is a thread of execution in a program.

Throwable
The Throwable class is the superclass of all errors and exceptions in the Java
language.

Exception Summary

ArithmeticException
Thrown when an exceptional arithmetic condition has
occurred.

ArrayIndexOutOfBoundsException
Thrown to indicate that an array has been accessed with an
illegal index.

CLDC Library API (beta 2) 1

CLDC Library API (beta 2)

ArrayStoreException
Thrown to indicate that an attempt has been made to store the
wrong type of object into an array of objects.

ClassCastException
Thrown to indicate that the code has attempted to cast an
object to a subclass of which it is not an instance.

ClassNotFoundException
Thrown when an application tries to load in a class through
its string name using: The forName method in class Class.

Exception
The class Exception and its subclasses are a form of
Throwable that indicates conditions that a reasonable
application might want to catch.

IllegalAccessException

Thrown when an application tries to load in a class, but the
currently executing method does not have access to the
definition of the specified class, because the class is not
public and in another package.

IllegalArgumentException
Thrown to indicate that a method has been passed an illegal
or inappropriate argument.

IllegalMonitorStateException
Thrown to indicate that a thread has attempted to wait on an
object’s monitor or to notify other threads waiting on an
object’s monitor without owning the specified monitor.

IllegalThreadStateException
Thrown to indicate that a thread is not in an appropriate state
for the requested operation.

IndexOutOfBoundsException
Thrown to indicate that an index of some sort (such as to an
array, to a string, or to a vector) is out of range.

InstantiationException

Thrown when an application tries to create an instance of a
class using the newInstance method in class Class, but
the specified class object cannot be instantiated because it is
an interface or is an abstract class.

InterruptedException
Thrown when a thread is waiting, sleeping, or otherwise
paused for a long time and another thread interrupts it using
the interrupt method in class Thread.

NegativeArraySizeException
Thrown if an application tries to create an array with negative
size.

NullPointerException
Thrown when an application attempts to use null in a case
where an object is required.

NumberFormatException
Thrown to indicate that the application has attempted to
convert a string to one of the numeric types, but that the
string does not have the appropriate format.

RuntimeException
RuntimeException is the superclass of those exceptions
that can be thrown during the normal operation of the Java
Virtual Machine.

SecurityException
Thrown by the security manager to indicate a security
violation.

2 CLDC Library API (beta 2)

CLDC Library API (beta 2)

StringIndexOutOfBoundsException
Thrown by the charAt method in class String and by
other String methods to indicate that an index is either
negative or greater than or equal to the size of the string.

Error Summary

Error
An Error is a subclass of Throwable that indicates serious problems that
a reasonable application should not try to catch.

OutOfMemoryError
Thrown when the Java Virtual Machine cannot allocate an object because it
is out of memory, and no more memory could be made available by the
garbage collector.

VirtualMachineError
Thrown to indicate that the Java Virtual Machine is broken or has run out of
resources necessary for it to continue operating.

Overview Package Class Tree Deprecated Index Help
 PREV PACKAGE NEXT PACKAGE FRAMES NO FRAMES

CLDC Library API (beta 2) 3

CLDC Library API (beta 2)

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

java.lang
Class ArithmeticException
java.lang.Object
 |
 +--java.lang.Throwable
 |
 +--java.lang.Exception
 |
 +--java.lang.RuntimeException
 |
 +--java.lang.ArithmeticException

public class ArithmeticException
extends RuntimeException

Thrown when an exceptional arithmetic condition has occurred. For example, an integer "divide by
zero" throws an instance of this class.

Since:
JDK1.0

Constructor Summary
ArithmeticException()
 Constructs an ArithmeticException with no detail message.

ArithmeticException(String s)
 Constructs an ArithmeticException with the specified detail message.

Methods inherited from class java.lang.Throwable

getMessage, printStackTrace, toString

Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, wait, wait, wait

Constructor Detail

4 CLDC Library API (beta 2)

CLDC Library API (beta 2)

ArithmeticException
public ArithmeticException()

Constructs an ArithmeticException with no detail message.

ArithmeticException
public ArithmeticException(String s)

Constructs an ArithmeticException with the specified detail message.
Parameters:

s - the detail message.

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

CLDC Library API (beta 2) 5

CLDC Library API (beta 2)

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

java.lang
Class ArrayIndexOutOfBoundsException
java.lang.Object
 |
 +--java.lang.Throwable
 |
 +--java.lang.Exception
 |
 +--java.lang.RuntimeException
 |
 +--java.lang.IndexOutOfBoundsException
 |
 +--java.lang.ArrayIndexOutOfBoundsException

public class ArrayIndexOutOfBoundsException
extends IndexOutOfBoundsException

Thrown to indicate that an array has been accessed with an illegal index. The index is either negative
or greater than or equal to the size of the array.

Since:
JDK1.0

Constructor Summary
ArrayIndexOutOfBoundsException()
 Constructs an ArrayIndexOutOfBoundsException with no detail message.

ArrayIndexOutOfBoundsException(int index)
 Constructs a new ArrayIndexOutOfBoundsException class with an argument
indicating the illegal index.

ArrayIndexOutOfBoundsException(String s)
 Constructs an ArrayIndexOutOfBoundsException class with the specified detail
message.

Methods inherited from class java.lang.Throwable

getMessage, printStackTrace, toString

6 CLDC Library API (beta 2)

CLDC Library API (beta 2)

Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, wait, wait, wait

Constructor Detail

ArrayIndexOutOfBoundsException
public ArrayIndexOutOfBoundsException()

Constructs an ArrayIndexOutOfBoundsException with no detail message.

ArrayIndexOutOfBoundsException
public ArrayIndexOutOfBoundsException(int index)

Constructs a new ArrayIndexOutOfBoundsException class with an argument indicating
the illegal index.
Parameters:

index - the illegal index.

ArrayIndexOutOfBoundsException
public ArrayIndexOutOfBoundsException(String s)

Constructs an ArrayIndexOutOfBoundsException class with the specified detail
message.
Parameters:

s - the detail message.

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

CLDC Library API (beta 2) 7

CLDC Library API (beta 2)

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

java.lang
Class ArrayStoreException
java.lang.Object
 |
 +--java.lang.Throwable
 |
 +--java.lang.Exception
 |
 +--java.lang.RuntimeException
 |
 +--java.lang.ArrayStoreException

public class ArrayStoreException
extends RuntimeException

Thrown to indicate that an attempt has been made to store the wrong type of object into an array of
objects. For example, the following code generates an ArrayStoreException:

 Object x[] = new String[3];
 x[0] = new Integer(0);

Since:
JDK1.0

Constructor Summary
ArrayStoreException()
 Constructs an ArrayStoreException with no detail message.

ArrayStoreException(String s)
 Constructs an ArrayStoreException with the specified detail message.

Methods inherited from class java.lang.Throwable

getMessage, printStackTrace, toString

Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, wait, wait, wait

8 CLDC Library API (beta 2)

CLDC Library API (beta 2)

Constructor Detail

ArrayStoreException
public ArrayStoreException()

Constructs an ArrayStoreException with no detail message.

ArrayStoreException
public ArrayStoreException(String s)

Constructs an ArrayStoreException with the specified detail message.
Parameters:

s - the detail message.

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

CLDC Library API (beta 2) 9

CLDC Library API (beta 2)

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

java.lang
Class Boolean
java.lang.Object
 |
 +--java.lang.Boolean

public final class Boolean
extends Object

The Boolean class wraps a value of the primitive type boolean in an object. An object of type
Boolean contains a single field whose type is boolean.

Since:
JDK1.0

Constructor Summary
Boolean(boolean value)
 Allocates a Boolean object representing the value argument.

Method Summary
 boolean booleanValue()

 Returns the value of this Boolean object as a boolean primitive.

 boolean equals(Object obj)
 Returns true if and only if the argument is not null and is a Boolean object
that represents the same boolean value as this object.

 int hashCode()
 Returns a hash code for this Boolean object.

Methods inherited from class java.lang.Object

getClass, notify, notifyAll, toString, wait, wait, wait

Constructor Detail

10 CLDC Library API (beta 2)

CLDC Library API (beta 2)

Boolean
public Boolean(boolean value)

Allocates a Boolean object representing the value argument.
Parameters:

value - the value of the Boolean.

Method Detail

booleanValue
public boolean booleanValue()

Returns the value of this Boolean object as a boolean primitive.
Returns:

the primitive boolean value of this object.

hashCode
public int hashCode()

Returns a hash code for this Boolean object.
Returns:

the integer 1231 if this object represents true; returns the integer 1237 if this object
represents false.

Overrides:
hashCode in class Object

equals
public boolean equals(Object obj)

Returns true if and only if the argument is not null and is a Boolean object that represents
the same boolean value as this object.
Parameters:

obj - the object to compare with.
Returns:

true if the Boolean objects represent the same value; false otherwise.
Overrides:

equals in class Object

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

CLDC Library API (beta 2) 11

CLDC Library API (beta 2)

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

java.lang
Class Byte
java.lang.Object
 |
 +--java.lang.Byte

public final class Byte
extends Object

The Byte class is the standard wrapper for byte values.

Since:
JDK1.1

Field Summary
static byte MAX_VALUE

 The maximum value a Byte can have.

static byte MIN_VALUE
 The minimum value a Byte can have.

Constructor Summary
Byte(byte value)
 Constructs a Byte object initialized to the specified byte value.

Method Summary
 byte byteValue()

 Returns the value of this Byte as a byte.

 boolean equals(Object obj)
 Compares this object to the specified object.

 int hashCode()
 Returns a hashcode for this Byte.

12 CLDC Library API (beta 2)

CLDC Library API (beta 2)

Methods inherited from class java.lang.Object

getClass, notify, notifyAll, toString, wait, wait, wait

Field Detail

MIN_VALUE
public static final byte MIN_VALUE

The minimum value a Byte can have.

MAX_VALUE
public static final byte MAX_VALUE

The maximum value a Byte can have.

Constructor Detail

Byte
public Byte(byte value)

Constructs a Byte object initialized to the specified byte value.
Parameters:

value - the initial value of the Byte

Method Detail

byteValue
public byte byteValue()

Returns the value of this Byte as a byte.

hashCode
public int hashCode()

Returns a hashcode for this Byte.
Overrides:

hashCode in class Object

CLDC Library API (beta 2) 13

CLDC Library API (beta 2)

equals
public boolean equals(Object obj)

Compares this object to the specified object.
Parameters:

obj - the object to compare with
Returns:

true if the objects are the same; false otherwise.
Overrides:

equals in class Object

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

14 CLDC Library API (beta 2)

CLDC Library API (beta 2)

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

java.lang
Class Character
java.lang.Object
 |
 +--java.lang.Character

public final class Character
extends Object

The Character class wraps a value of the primitive type char in an object. An object of type
Character contains a single field whose type is char.

In addition, this class provides several methods for determining the type of a character and converting
characters from uppercase to lowercase and vice versa.

Since:
JDK1.0

Field Summary
static int MAX_RADIX

 The maximum radix available for conversion to and from Strings.

static char MAX_VALUE
 The constant value of this field is the largest value of type char.

static int MIN_RADIX
 The minimum radix available for conversion to and from Strings.

static char MIN_VALUE
 The constant value of this field is the smallest value of type char.

Constructor Summary
Character(char value)
 Constructs a Character object and initializes it so that it represents the primitive value
argument.

CLDC Library API (beta 2) 15

CLDC Library API (beta 2)

Method Summary
 char charValue()

 Returns the value of this Character object.

static int digit(char ch, int radix)
 Returns the numeric value of the character ch in the specified radix.

 boolean equals(Object obj)
 Compares this object against the specified object.

 int hashCode()
 Returns a hash code for this Character.

static boolean isDigit(char ch)
 Determines if the specified character is a digit.

static boolean isLowerCase(char ch)
 Determines if the specified character is a lowercase character.

static boolean isUpperCase(char ch)
 Determines if the specified character is an uppercase character.

static char toLowerCase(char ch)
 The given character is mapped to its lowercase equivalent; if the character
has no lowercase equivalent, the character itself is returned.

 String toString()
 Returns a String object representing this character’s value.

static char toUpperCase(char ch)
 Converts the character argument to uppercase; if the character has no
lowercase equivalent, the character itself is returned.

Methods inherited from class java.lang.Object

getClass, notify, notifyAll, wait, wait, wait

Field Detail

MIN_RADIX
public static final int MIN_RADIX

The minimum radix available for conversion to and from Strings. The constant value of this field
is the smallest value permitted for the radix argument in radix-conversion methods such as the
digit method, the forDigit method, and the toString method of class Integer.
See Also:

Integer.toString(int, int), Integer.valueOf(java.lang.String)

16 CLDC Library API (beta 2)

CLDC Library API (beta 2)

MAX_RADIX
public static final int MAX_RADIX

The maximum radix available for conversion to and from Strings. The constant value of this field
is the largest value permitted for the radix argument in radix-conversion methods such as the
digit method, the forDigit method, and the toString method of class Integer.
See Also:

Integer.toString(int, int), Integer.valueOf(java.lang.String)

MIN_VALUE
public static final char MIN_VALUE

The constant value of this field is the smallest value of type char.
Since:

JDK1.0.2

MAX_VALUE
public static final char MAX_VALUE

The constant value of this field is the largest value of type char.
Since:

JDK1.0.2

Constructor Detail

Character
public Character(char value)

Constructs a Character object and initializes it so that it represents the primitive value
argument.
Parameters:

value - value for the new Character object.

Method Detail

charValue
public char charValue()

Returns the value of this Character object.
Returns:

the primitive char value represented by this object.

CLDC Library API (beta 2) 17

CLDC Library API (beta 2)

hashCode
public int hashCode()

Returns a hash code for this Character.
Returns:

a hash code value for this object.
Overrides:

hashCode in class Object

equals
public boolean equals(Object obj)

Compares this object against the specified object. The result is true if and only if the argument
is not null and is a Character object that represents the same char value as this object.
Parameters:

obj - the object to compare with.
Returns:

true if the objects are the same; false otherwise.
Overrides:

equals in class Object

toString
public String toString()

Returns a String object representing this character’s value. Converts this Character object to a
string. The result is a string whose length is 1. The string’s sole component is the primitive char
value represented by this object.
Returns:

a string representation of this object.
Overrides:

toString in class Object

isLowerCase
public static boolean isLowerCase(char ch)

Determines if the specified character is a lowercase character. This is currently only supported for
ISO-LATIN-1 characters: "a" through "z".
Parameters:

ch - the character to be tested.
Returns:

true if the character is lowercase; false otherwise.
Since:

JDK1.0

18 CLDC Library API (beta 2)

CLDC Library API (beta 2)

See Also:
isLowerCase(char), toLowerCase(char)

isUpperCase
public static boolean isUpperCase(char ch)

Determines if the specified character is an uppercase character. This is currently only supported
for ISO-LATIN-1 characters: "A" through "Z".
Parameters:

ch - the character to be tested.
Returns:

true if the character is uppercase; false otherwise.
Since:

1.0
See Also:

isLowerCase(char), toUpperCase(char)

isDigit
public static boolean isDigit(char ch)

Determines if the specified character is a digit. This is currently only supported for ISO-LATIN-1
digits: "0" through "9".
Parameters:

ch - the character to be tested.
Returns:

true if the character is a digit; false otherwise.
Since:

JDK1.0

toLowerCase
public static char toLowerCase(char ch)

The given character is mapped to its lowercase equivalent; if the character has no lowercase
equivalent, the character itself is returned. This is currently only supported for ISO-LATIN-1
characters.
Parameters:

ch - the character to be converted.
Returns:

the lowercase equivalent of the character, if any; otherwise the character itself.
Since:

JDK1.0
See Also:

isLowerCase(char), isUpperCase(char), toUpperCase(char)

CLDC Library API (beta 2) 19

CLDC Library API (beta 2)

toUpperCase
public static char toUpperCase(char ch)

Converts the character argument to uppercase; if the character has no lowercase equivalent, the
character itself is returned. This is currently only supported for ISO-LATIN-1 characters.
Parameters:

ch - the character to be converted.
Returns:

the uppercase equivalent of the character, if any; otherwise the character itself.
Since:

JDK1.0
See Also:

isLowerCase(char), isUpperCase(char), toLowerCase(char)

digit
public static int digit(char ch,
 int radix)

Returns the numeric value of the character ch in the specified radix. This is only supported for
ISO-LATIN-1 characters.
Parameters:

ch - the character to be converted.
radix - the radix.

Returns:
the numeric value represented by the character in the specified radix.

Since:
JDK1.0

See Also:
isDigit(char)

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

20 CLDC Library API (beta 2)

CLDC Library API (beta 2)

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

java.lang
Class Class
java.lang.Object
 |
 +--java.lang.Class

public final class Class
extends Object

Instances of the class Class represent classes and interfaces in a running Java application. Every
array also belongs to a class that is reflected as a Class object that is shared by all arrays with the
same element type and number of dimensions.

Class has no public constructor. Instead Class objects are constructed automatically by the Java
Virtual Machine as classes are loaded.

The following example uses a Class object to print the class name of an object:

 void printClassName(Object obj) {
 System.out.println("The class of " + obj +
 " is " + obj.getClass().getName());
 }

Since:
JDK1.0

CLDC Library API (beta 2) 21

CLDC Library API (beta 2)

Method Summary
static Class forName(String className)

 Returns the Class object associated with the class with the given string name.

 String getName()
 Returns the fully-qualified name of the entity (class, interface, array class,
primitive type, or void) represented by this Class object, as a String.

 InputStream getResourceAsStream(String name)
 Finds a resource with a given name.

 boolean isArray()
 Determines if this Class object represents an array class.

 boolean isAssignableFrom(Class cls)
 Determines if the class or interface represented by this Class object is either
the same as, or is a superclass or superinterface of, the class or interface represented
by the specified Class parameter.

 boolean isInstance(Object obj)
 Determines if the specified Object is assignment-compatible with the object
represented by this Class.

 boolean isInterface()
 Determines if the specified Class object represents an interface type.

 Object newInstance()
 Creates a new instance of a class.

 String toString()
 Converts the object to a string.

Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, wait, wait, wait

Method Detail

toString
public String toString()

Converts the object to a string. The string representation is the string "class" or "interface",
followed by a space, and then by the fully qualified name of the class in the format returned by
getName. If this Class object represents a primitive type, this method returns the name of the
primitive type. If this Class object represents void this method returns "void".
Returns:

a string representation of this class object.

22 CLDC Library API (beta 2)

CLDC Library API (beta 2)

Overrides:
toString in class Object

forName
public static Class forName(String className)
 throws ClassNotFoundException

Returns the Class object associated with the class with the given string name. Given the
fully-qualified name for a class or interface, this method attempts to locate, load and link the
class. If it succeeds, returns the Class object representing the class. If it fails, the method throws a
ClassNotFoundException.

For example, the following code fragment returns the runtime Class descriptor for the class
named java.lang.Thread:

Class t = Class.forName("java.lang.Thread")
Parameters:

className - the fully qualified name of the desired class.
Returns:

the Class descriptor for the class with the specified name.
Throws:

ClassNotFoundException - if the class could not be found.
Since:

JDK1.0

newInstance
public Object newInstance()
 throws InstantiationException,
 IllegalAccessException

Creates a new instance of a class.
Returns:

a newly allocated instance of the class represented by this object. This is done exactly as if
by a new expression with an empty argument list.

Throws:
IllegalAccessException - if the class or initializer is not accessible.
InstantiationException - if an application tries to instantiate an abstract class or an interface,
or if the instantiation fails for some other reason.

Since:
JDK1.0

isInstance
public boolean isInstance(Object obj)

Determines if the specified Object is assignment-compatible with the object represented by this
Class. This method is the dynamic equivalent of the Java language instanceof operator. The
method returns true if the specified Object argument is non-null and can be cast to the
reference type represented by this Class object without raising a ClassCastException. It

CLDC Library API (beta 2) 23

CLDC Library API (beta 2)

returns false otherwise.

Specifically, if this Class object represents a declared class, this method returns true if the
specified Object argument is an instance of the represented class (or of any of its subclasses); it
returns false otherwise. If this Class object represents an array class, this method returns
true if the specified Object argument can be converted to an object of the array class by an
identity conversion or by a widening reference conversion; it returns false otherwise. If this
Class object represents an interface, this method returns true if the class or any superclass of
the specified Object argument implements this interface; it returns false otherwise. If this
Class object represents a primitive type, this method returns false.
Parameters:

obj - the object to check
Returns:

true if obj is an instance of this class
Since:

JDK1.1

isAssignableFrom
public boolean isAssignableFrom(Class cls)

Determines if the class or interface represented by this Class object is either the same as, or is a
superclass or superinterface of, the class or interface represented by the specified Class
parameter. It returns true if so; otherwise it returns false. If this Class object represents a
primitive type, this method returns true if the specified Class parameter is exactly this Class
object; otherwise it returns false.

Specifically, this method tests whether the type represented by the specified Class parameter
can be converted to the type represented by this Class object via an identity conversion or via a
widening reference conversion. See The Java Language Specification, sections 5.1.1 and 5.1.4 ,
for details.
Parameters:

cls - the Class object to be checked
Returns:

the boolean value indicating whether objects of the type cls can be assigned to objects of
this class

Throws:
NullPointerException - if the specified Class parameter is null.

Since:
JDK1.1

isInterface
public boolean isInterface()

Determines if the specified Class object represents an interface type.
Returns:

true if this object represents an interface; false otherwise.

24 CLDC Library API (beta 2)

CLDC Library API (beta 2)

isArray
public boolean isArray()

Determines if this Class object represents an array class.
Returns:

true if this object represents an array class; false otherwise.
Since:

JDK1.1

getName
public String getName()

Returns the fully-qualified name of the entity (class, interface, array class, primitive type, or void)
represented by this Class object, as a String.

If this Class object represents a class of arrays, then the internal form of the name consists of
the name of the element type in Java signature format, preceded by one or more "[" characters
representing the depth of array nesting. Thus:

 (new Object[3]).getClass().getName()

returns "[Ljava.lang.Object;" and:

 (new int[3][4][5][6][7][8][9]).getClass().getName()

returns "[[[[[[[I". The encoding of element type names is as follows:

 B byte
 C char
 D double
 F float
 I int
 J long
 Lclassname; class or interface
 S short
 Z boolean

The class or interface name classname is given in fully qualified form as shown in the example
above.
Returns:

the fully qualified name of the class or interface represented by this object.

getResourceAsStream
public InputStream getResourceAsStream(String name)

Finds a resource with a given name. This method returns null if no resource with this name is
found. The rules for searching resources associated with a given class are profile specific.
Parameters:

name - name of the desired resource

CLDC Library API (beta 2) 25

CLDC Library API (beta 2)

Returns:
a java.io.InputStream object.

Since:
JDK1.1

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

26 CLDC Library API (beta 2)

CLDC Library API (beta 2)

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

java.lang
Class ClassCastException
java.lang.Object
 |
 +--java.lang.Throwable
 |
 +--java.lang.Exception
 |
 +--java.lang.RuntimeException
 |
 +--java.lang.ClassCastException

public class ClassCastException
extends RuntimeException

Thrown to indicate that the code has attempted to cast an object to a subclass of which it is not an
instance. For example, the following code generates a ClassCastException:

 Object x = new Integer(0);
 System.out.println((String)x);

Since:
JDK1.0

Constructor Summary
ClassCastException()
 Constructs a ClassCastException with no detail message.

ClassCastException(String s)
 Constructs a ClassCastException with the specified detail message.

Methods inherited from class java.lang.Throwable

getMessage, printStackTrace, toString

Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, wait, wait, wait

CLDC Library API (beta 2) 27

CLDC Library API (beta 2)

Constructor Detail

ClassCastException
public ClassCastException()

Constructs a ClassCastException with no detail message.

ClassCastException
public ClassCastException(String s)

Constructs a ClassCastException with the specified detail message.
Parameters:

s - the detail message.

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

28 CLDC Library API (beta 2)

CLDC Library API (beta 2)

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

java.lang
Class ClassNotFoundException
java.lang.Object
 |
 +--java.lang.Throwable
 |
 +--java.lang.Exception
 |
 +--java.lang.ClassNotFoundException

public class ClassNotFoundException
extends Exception

Thrown when an application tries to load in a class through its string name using:

The forName method in class Class.

but no definition for the class with the specified name could be found.

Since:
JDK1.0

See Also:
Class.forName(java.lang.String)

Constructor Summary
ClassNotFoundException()
 Constructs a ClassNotFoundException with no detail message.

ClassNotFoundException(String s)
 Constructs a ClassNotFoundException with the specified detail message.

Methods inherited from class java.lang.Throwable

getMessage, printStackTrace, toString

Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, wait, wait, wait

CLDC Library API (beta 2) 29

CLDC Library API (beta 2)

Constructor Detail

ClassNotFoundException
public ClassNotFoundException()

Constructs a ClassNotFoundException with no detail message.

ClassNotFoundException
public ClassNotFoundException(String s)

Constructs a ClassNotFoundException with the specified detail message.
Parameters:

s - the detail message.

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

30 CLDC Library API (beta 2)

CLDC Library API (beta 2)

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

java.lang
Class Error
java.lang.Object
 |
 +--java.lang.Throwable
 |
 +--java.lang.Error

Direct Known Subclasses:
VirtualMachineError

public class Error
extends Throwable

An Error is a subclass of Throwable that indicates serious problems that a reasonable application
should not try to catch. Most such errors are abnormal conditions.

A method is not required to declare in its throws clause any subclasses of Error that might be
thrown during the execution of the method but not caught, since these errors are abnormal conditions
that should never occur.

Since:
JDK1.0

Constructor Summary
Error()
 Constructs an Error with no specified detail message.

Error(String s)
 Constructs an Error with the specified detail message.

Methods inherited from class java.lang.Throwable

getMessage, printStackTrace, toString

Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, wait, wait, wait

CLDC Library API (beta 2) 31

CLDC Library API (beta 2)

Constructor Detail

Error
public Error()

Constructs an Error with no specified detail message.

Error
public Error(String s)

Constructs an Error with the specified detail message.
Parameters:

s - the detail message.

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

32 CLDC Library API (beta 2)

CLDC Library API (beta 2)

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

java.lang
Class Exception
java.lang.Object
 |
 +--java.lang.Throwable
 |
 +--java.lang.Exception

Direct Known Subclasses:
ClassNotFoundException, IllegalAccessException, InstantiationException, InterruptedException,
IOException, RuntimeException

public class Exception
extends Throwable

The class Exception and its subclasses are a form of Throwable that indicates conditions that a
reasonable application might want to catch.

Since:
JDK1.0

See Also:
Error

Constructor Summary
Exception()
 Constructs an Exception with no specified detail message.

Exception(String s)
 Constructs an Exception with the specified detail message.

Methods inherited from class java.lang.Throwable

getMessage, printStackTrace, toString

Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, wait, wait, wait

CLDC Library API (beta 2) 33

CLDC Library API (beta 2)

Constructor Detail

Exception
public Exception()

Constructs an Exception with no specified detail message.

Exception
public Exception(String s)

Constructs an Exception with the specified detail message.
Parameters:

s - the detail message.

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

34 CLDC Library API (beta 2)

CLDC Library API (beta 2)

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

java.lang
Class IllegalAccessException
java.lang.Object
 |
 +--java.lang.Throwable
 |
 +--java.lang.Exception
 |
 +--java.lang.IllegalAccessException

public class IllegalAccessException
extends Exception

Thrown when an application tries to load in a class, but the currently executing method does not have
access to the definition of the specified class, because the class is not public and in another package.

An instance of this class can also be thrown when an application tries to create an instance of a class
using the newInstance method in class Class, but the current method does not have access to the
appropriate zero-argument constructor.

Since:
JDK1.0

See Also:
Class.forName(java.lang.String), Class.newInstance()

Constructor Summary
IllegalAccessException()
 Constructs an IllegalAccessException without a detail message.

IllegalAccessException(String s)
 Constructs an IllegalAccessException with a detail message.

Methods inherited from class java.lang.Throwable

getMessage, printStackTrace, toString

Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, wait, wait, wait

CLDC Library API (beta 2) 35

CLDC Library API (beta 2)

Constructor Detail

IllegalAccessException
public IllegalAccessException()

Constructs an IllegalAccessException without a detail message.

IllegalAccessException
public IllegalAccessException(String s)

Constructs an IllegalAccessException with a detail message.
Parameters:

s - the detail message.

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

36 CLDC Library API (beta 2)

CLDC Library API (beta 2)

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

java.lang
Class IllegalArgumentException
java.lang.Object
 |
 +--java.lang.Throwable
 |
 +--java.lang.Exception
 |
 +--java.lang.RuntimeException
 |
 +--java.lang.IllegalArgumentException

Direct Known Subclasses:
IllegalThreadStateException, NumberFormatException

public class IllegalArgumentException
extends RuntimeException

Thrown to indicate that a method has been passed an illegal or inappropriate argument.

Since:
JDK1.0

See Also:
Thread.setPriority(int)

Constructor Summary
IllegalArgumentException()
 Constructs an IllegalArgumentException with no detail message.

IllegalArgumentException(String s)
 Constructs an IllegalArgumentException with the specified detail message.

Methods inherited from class java.lang.Throwable

getMessage, printStackTrace, toString

Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, wait, wait, wait

CLDC Library API (beta 2) 37

CLDC Library API (beta 2)

Constructor Detail

IllegalArgumentException
public IllegalArgumentException()

Constructs an IllegalArgumentException with no detail message.

IllegalArgumentException
public IllegalArgumentException(String s)

Constructs an IllegalArgumentException with the specified detail message.
Parameters:

s - the detail message.

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

38 CLDC Library API (beta 2)

CLDC Library API (beta 2)

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

java.lang
Class IllegalMonitorStateException
java.lang.Object
 |
 +--java.lang.Throwable
 |
 +--java.lang.Exception
 |
 +--java.lang.RuntimeException
 |
 +--java.lang.IllegalMonitorStateException

public class IllegalMonitorStateException
extends RuntimeException

Thrown to indicate that a thread has attempted to wait on an object’s monitor or to notify other threads
waiting on an object’s monitor without owning the specified monitor.

Since:
JDK1.0

See Also:
Object.notify(), Object.notifyAll(), Object.wait(),
Object.wait(long), Object.wait(long, int)

Constructor Summary
IllegalMonitorStateException()
 Constructs an IllegalMonitorStateException with no detail message.

IllegalMonitorStateException(String s)
 Constructs an IllegalMonitorStateException with the specified detail message.

Methods inherited from class java.lang.Throwable

getMessage, printStackTrace, toString

Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, wait, wait, wait

CLDC Library API (beta 2) 39

CLDC Library API (beta 2)

Constructor Detail

IllegalMonitorStateException
public IllegalMonitorStateException()

Constructs an IllegalMonitorStateException with no detail message.

IllegalMonitorStateException
public IllegalMonitorStateException(String s)

Constructs an IllegalMonitorStateException with the specified detail message.
Parameters:

s - the detail message.

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

40 CLDC Library API (beta 2)

CLDC Library API (beta 2)

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

java.lang
Class IllegalThreadStateException
java.lang.Object
 |
 +--java.lang.Throwable
 |
 +--java.lang.Exception
 |
 +--java.lang.RuntimeException
 |
 +--java.lang.IllegalArgumentException
 |
 +--java.lang.IllegalThreadStateException

public class IllegalThreadStateException
extends IllegalArgumentException

Thrown to indicate that a thread is not in an appropriate state for the requested operation. See, for
example, the suspend and resume methods in class Thread.

Since:
JDK1.0

Constructor Summary
IllegalThreadStateException()
 Constructs an IllegalThreadStateException with no detail message.

IllegalThreadStateException(String s)
 Constructs an IllegalThreadStateException with the specified detail message.

Methods inherited from class java.lang.Throwable

getMessage, printStackTrace, toString

Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, wait, wait, wait

CLDC Library API (beta 2) 41

CLDC Library API (beta 2)

Constructor Detail

IllegalThreadStateException
public IllegalThreadStateException()

Constructs an IllegalThreadStateException with no detail message.

IllegalThreadStateException
public IllegalThreadStateException(String s)

Constructs an IllegalThreadStateException with the specified detail message.
Parameters:

s - the detail message.

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

42 CLDC Library API (beta 2)

CLDC Library API (beta 2)

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

java.lang
Class IndexOutOfBoundsException
java.lang.Object
 |
 +--java.lang.Throwable
 |
 +--java.lang.Exception
 |
 +--java.lang.RuntimeException
 |
 +--java.lang.IndexOutOfBoundsException

Direct Known Subclasses:
ArrayIndexOutOfBoundsException, StringIndexOutOfBoundsException

public class IndexOutOfBoundsException
extends RuntimeException

Thrown to indicate that an index of some sort (such as to an array, to a string, or to a vector) is out of
range.

Applications can subclass this class to indicate similar exceptions.

Since:
JDK1.0

Constructor Summary
IndexOutOfBoundsException()
 Constructs an IndexOutOfBoundsException with no detail message.

IndexOutOfBoundsException(String s)
 Constructs an IndexOutOfBoundsException with the specified detail message.

Methods inherited from class java.lang.Throwable

getMessage, printStackTrace, toString

Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, wait, wait, wait

CLDC Library API (beta 2) 43

CLDC Library API (beta 2)

Constructor Detail

IndexOutOfBoundsException
public IndexOutOfBoundsException()

Constructs an IndexOutOfBoundsException with no detail message.

IndexOutOfBoundsException
public IndexOutOfBoundsException(String s)

Constructs an IndexOutOfBoundsException with the specified detail message.
Parameters:

s - the detail message.

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

44 CLDC Library API (beta 2)

CLDC Library API (beta 2)

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

java.lang
Class InstantiationException
java.lang.Object
 |
 +--java.lang.Throwable
 |
 +--java.lang.Exception
 |
 +--java.lang.InstantiationException

public class InstantiationException
extends Exception

Thrown when an application tries to create an instance of a class using the newInstance method in
class Class, but the specified class object cannot be instantiated because it is an interface or is an
abstract class.

Since:
JDK1.0

See Also:
Class.newInstance()

Constructor Summary
InstantiationException()
 Constructs an InstantiationException with no detail message.

InstantiationException(String s)
 Constructs an InstantiationException with the specified detail message.

Methods inherited from class java.lang.Throwable

getMessage, printStackTrace, toString

Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, wait, wait, wait

CLDC Library API (beta 2) 45

CLDC Library API (beta 2)

Constructor Detail

InstantiationException
public InstantiationException()

Constructs an InstantiationException with no detail message.

InstantiationException
public InstantiationException(String s)

Constructs an InstantiationException with the specified detail message.
Parameters:

s - the detail message.

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

46 CLDC Library API (beta 2)

CLDC Library API (beta 2)

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

java.lang
Class Integer
java.lang.Object
 |
 +--java.lang.Integer

public final class Integer
extends Object

The Integer class wraps a value of the primitive type int in an object. An object of type Integer
contains a single field whose type is int.

In addition, this class provides several methods for converting an int to a String and a String to
an int, as well as other constants and methods useful when dealing with an int.

Since:
JDK1.0

Field Summary
static int MAX_VALUE

 The largest value of type int.

static int MIN_VALUE
 The smallest value of type int.

Constructor Summary
Integer(int value)
 Constructs a newly allocated Integer object that represents the primitive int argument.

CLDC Library API (beta 2) 47

CLDC Library API (beta 2)

Method Summary
 byte byteValue()

 Returns the value of this Integer as a byte.

 boolean equals(Object obj)
 Compares this object to the specified object.

 int hashCode()
 Returns a hashcode for this Integer.

 int intValue()
 Returns the value of this Integer as an int.

 long longValue()
 Returns the value of this Integer as a long.

static int parseInt(String s)
 Parses the string argument as a signed decimal integer.

static int parseInt(String s, int radix)
 Parses the string argument as a signed integer in the radix specified by the
second argument.

 short shortValue()
 Returns the value of this Integer as a short.

static String toBinaryString(int i)
 Creates a string representation of the integer argument as an unsigned
integer in base 2.

static String toHexString(int i)
 Creates a string representation of the integer argument as an unsigned
integer in base 16.

static String toOctalString(int i)
 Creates a string representation of the integer argument as an unsigned
integer in base 8.

 String toString()
 Returns a String object representing this Integer’s value.

static String toString(int i)
 Returns a new String object representing the specified integer.

static String toString(int i, int radix)
 Creates a string representation of the first argument in the radix specified by
the second argument.

static Integer valueOf(String s)
 Returns a new Integer object initialized to the value of the specified String.

static Integer valueOf(String s, int radix)
 Returns a new Integer object initialized to the value of the specified String.

48 CLDC Library API (beta 2)

CLDC Library API (beta 2)

Methods inherited from class java.lang.Object

getClass, notify, notifyAll, wait, wait, wait

Field Detail

MIN_VALUE
public static final int MIN_VALUE

The smallest value of type int. The constant value of this field is -2147483648.

MAX_VALUE
public static final int MAX_VALUE

The largest value of type int. The constant value of this field is 2147483647.

Constructor Detail

Integer
public Integer(int value)

Constructs a newly allocated Integer object that represents the primitive int argument.
Parameters:

value - the value to be represented by the Integer.

Method Detail

toString
public static String toString(int i,
 int radix)

Creates a string representation of the first argument in the radix specified by the second argument.

If the radix is smaller than Character.MIN_RADIX or larger than
Character.MAX_RADIX, then the radix 10 is used instead.

If the first argument is negative, the first element of the result is the ASCII minus character ’-’
(’\u002d’). If the first argument is not negative, no sign character appears in the result.

The remaining characters of the result represent the magnitude of the first argument. If the
magnitude is zero, it is represented by a single zero character ’0’ (’\u0030’); otherwise, the
first character of the representation of the magnitude will not be the zero character. The following
ASCII characters are used as digits:

CLDC Library API (beta 2) 49

CLDC Library API (beta 2)

 0123456789abcdefghijklmnopqrstuvwxyz

These are ’\u0030’ through ’\u0039’ and ’\u0061’ through ’\u007a’. If the radix is
N, then the first N of these characters are used as radix-N digits in the order shown. Thus, the
digits for hexadecimal (radix 16) are 0123456789abcdef. If uppercase letters are desired, the
String.toUpperCase() method may be called on the result:

 Integer.toString(n, 16).toUpperCase()

Parameters:
i - an integer.
radix - the radix.

Returns:
a string representation of the argument in the specified radix.

See Also:
Character.MAX_RADIX, Character.MIN_RADIX

toHexString
public static String toHexString(int i)

Creates a string representation of the integer argument as an unsigned integer in base 16.

The unsigned integer value is the argument plus 232 if the argument is negative; otherwise, it is
equal to the argument. This value is converted to a string of ASCII digits in hexadecimal
(base 16) with no extra leading 0s. If the unsigned magnitude is zero, it is represented by a single
zero character ’0’ (’\u0030’); otherwise, the first character of the representation of the
unsigned magnitude will not be the zero character. The following characters are used as
hexadecimal digits:

 0123456789abcdef

These are the characters ’\u0030’ through ’\u0039’ and ’u\0039’ through ’\u0066’.
If the uppercase letters are desired, the String.toUpperCase() method may be called on
the result:

 Long.toHexString(n).toUpperCase()

Parameters:
i - an integer.

Returns:
the string representation of the unsigned integer value represented by the argument in
hexadecimal (base 16).

Since:
JDK1.0.2

toOctalString
public static String toOctalString(int i)

50 CLDC Library API (beta 2)

CLDC Library API (beta 2)

Creates a string representation of the integer argument as an unsigned integer in base 8.

The unsigned integer value is the argument plus 232 if the argument is negative; otherwise, it is
equal to the argument. This value is converted to a string of ASCII digits in octal (base 8) with no
extra leading 0s.

If the unsigned magnitude is zero, it is represented by a single zero character ’0’ (’\u0030’);
otherwise, the first character of the representation of the unsigned magnitude will not be the zero
character. The octal digits are:

 01234567

These are the characters ’\u0030’ through ’\u0037’.
Parameters:

i - an integer
Returns:

the string representation of the unsigned integer value represented by the argument in octal
(base 8).

Since:
JDK1.0.2

toBinaryString
public static String toBinaryString(int i)

Creates a string representation of the integer argument as an unsigned integer in base 2.

The unsigned integer value is the argument plus 232 if the argument is negative; otherwise it is
equal to the argument. This value is converted to a string of ASCII digits in binary (base 2) with
no extra leading 0s. If the unsigned magnitude is zero, it is represented by a single zero character
’0’ (’\u0030’); otherwise, the first character of the representation of the unsigned magnitude
will not be the zero character. The characters ’0’ (’\u0030’) and ’1’ (’\u0031’) are used
as binary digits.
Parameters:

i - an integer.
Returns:

the string representation of the unsigned integer value represented by the argument in binary
(base 2).

Since:
JDK1.0.2

toString
public static String toString(int i)

Returns a new String object representing the specified integer. The argument is converted to
signed decimal representation and returned as a string, exactly as if the argument and radix 10
were given as arguments to the toString(int, int) method.
Parameters:

i - an integer to be converted.

CLDC Library API (beta 2) 51

CLDC Library API (beta 2)

Returns:
a string representation of the argument in base 10.

parseInt
public static int parseInt(String s,
 int radix)
 throws NumberFormatException

Parses the string argument as a signed integer in the radix specified by the second argument. The
characters in the string must all be digits of the specified radix (as determined by whether
Character.digit(char, int) returns a nonnegative value), except that the first character
may be an ASCII minus sign ’-’ (’\u002d’) to indicate a negative value. The resulting integer
value is returned.

An exception of type NumberFormatException is thrown if any of the following situations
occurs:

The first argument is null or is a string of length zero.
The radix is either smaller than Character.MIN_RADIX or larger than
Character.MAX_RADIX.
Any character of the string is not a digit of the specified radix, except that the first character
may be a minus sign ’-’ (’\u002d’) provided that the string is longer than length 1.
The integer value represented by the string is not a value of type int.

Examples:

 parseInt("0", 10) returns 0
 parseInt("473", 10) returns 473
 parseInt("-0", 10) returns 0
 parseInt("-FF", 16) returns -255
 parseInt("1100110", 2) returns 102
 parseInt("2147483647", 10) returns 2147483647
 parseInt("-2147483648", 10) returns -2147483648
 parseInt("2147483648", 10) throws a NumberFormatException
 parseInt("99", 8) throws a NumberFormatException
 parseInt("Kona", 10) throws a NumberFormatException
 parseInt("Kona", 27) returns 411787

Parameters:
s - the String containing the integer.
radix - the radix to be used.

Returns:
the integer represented by the string argument in the specified radix.

Throws:
NumberFormatException - if the string does not contain a parsable integer.

parseInt
public static int parseInt(String s)
 throws NumberFormatException

52 CLDC Library API (beta 2)

CLDC Library API (beta 2)

Parses the string argument as a signed decimal integer. The characters in the string must all be
decimal digits, except that the first character may be an ASCII minus sign ’-’ (’\u002d’) to
indicate a negative value. The resulting integer value is returned, exactly as if the argument and
the radix 10 were given as arguments to the parseInt(java.lang.String, int)
method.
Parameters:

s - a string.
Returns:

the integer represented by the argument in decimal.
Throws:

NumberFormatException - if the string does not contain a parsable integer.

valueOf
public static Integer valueOf(String s,
 int radix)
 throws NumberFormatException

Returns a new Integer object initialized to the value of the specified String. The first argument is
interpreted as representing a signed integer in the radix specified by the second argument, exactly
as if the arguments were given to the parseInt(java.lang.String, int) method. The
result is an Integer object that represents the integer value specified by the string.

In other words, this method returns an Integer object equal to the value of:

 new Integer(Integer.parseInt(s, radix))

Parameters:
s - the string to be parsed.
radix - the radix of the integer represented by string s

Returns:
a newly constructed Integer initialized to the value represented by the string argument in
the specified radix.

Throws:
NumberFormatException - if the String cannot be parsed as an int.

valueOf
public static Integer valueOf(String s)
 throws NumberFormatException

Returns a new Integer object initialized to the value of the specified String. The argument is
interpreted as representing a signed decimal integer, exactly as if the argument were given to the
parseInt(java.lang.String) method. The result is an Integer object that represents
the integer value specified by the string.

In other words, this method returns an Integer object equal to the value of:

 new Integer(Integer.parseInt(s))

CLDC Library API (beta 2) 53

CLDC Library API (beta 2)

Parameters:
s - the string to be parsed.

Returns:
a newly constructed Integer initialized to the value represented by the string argument.

Throws:
NumberFormatException - if the string cannot be parsed as an integer.

byteValue
public byte byteValue()

Returns the value of this Integer as a byte.
Since:

JDK1.1

shortValue
public short shortValue()

Returns the value of this Integer as a short.
Since:

JDK1.1

intValue
public int intValue()

Returns the value of this Integer as an int.
Returns:

the int value represented by this object.

longValue
public long longValue()

Returns the value of this Integer as a long.
Returns:

the int value represented by this object that is converted to type long and the result of the
conversion is returned.

toString
public String toString()

Returns a String object representing this Integer’s value. The value is converted to signed decimal
representation and returned as a string, exactly as if the integer value were given as an argument
to the toString(int) method.

54 CLDC Library API (beta 2)

CLDC Library API (beta 2)

Returns:
a string representation of the value of this object in base 10.

Overrides:
toString in class Object

hashCode
public int hashCode()

Returns a hashcode for this Integer.
Returns:

a hash code value for this object, equal to the primitive int value represented by this
Integer object.

Overrides:
hashCode in class Object

equals
public boolean equals(Object obj)

Compares this object to the specified object. The result is true if and only if the argument is not
null and is an Integer object that contains the same int value as this object.
Parameters:

obj - the object to compare with.
Returns:

true if the objects are the same; false otherwise.
Overrides:

equals in class Object

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

CLDC Library API (beta 2) 55

CLDC Library API (beta 2)

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

java.lang
Class InterruptedException
java.lang.Object
 |
 +--java.lang.Throwable
 |
 +--java.lang.Exception
 |
 +--java.lang.InterruptedException

public class InterruptedException
extends Exception

Thrown when a thread is waiting, sleeping, or otherwise paused for a long time and another thread
interrupts it using the interrupt method in class Thread.

Since:
JDK1.0

See Also:
Object.wait(), Object.wait(long), Object.wait(long, int),
Thread.sleep(long)

Constructor Summary
InterruptedException()
 Constructs an InterruptedException with no detail message.

InterruptedException(String s)
 Constructs an InterruptedException with the specified detail message.

Methods inherited from class java.lang.Throwable

getMessage, printStackTrace, toString

Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, wait, wait, wait

56 CLDC Library API (beta 2)

CLDC Library API (beta 2)

Constructor Detail

InterruptedException
public InterruptedException()

Constructs an InterruptedException with no detail message.

InterruptedException
public InterruptedException(String s)

Constructs an InterruptedException with the specified detail message.
Parameters:

s - the detail message.

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

CLDC Library API (beta 2) 57

CLDC Library API (beta 2)

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

java.lang
Class Long
java.lang.Object
 |
 +--java.lang.Long

public final class Long
extends Object

The Long class wraps a value of the primitive type long in an object. An object of type Long
contains a single field whose type is long.

In addition, this class provides several methods for converting a long to a String and a String to
a long, as well as other constants and methods useful when dealing with a long.

Since:
JDK1.0

Field Summary
static long MAX_VALUE

 The largest value of type long.

static long MIN_VALUE
 The smallest value of type long.

Constructor Summary
Long(long value)
 Constructs a newly allocated Long object that represents the primitive long argument.

58 CLDC Library API (beta 2)

CLDC Library API (beta 2)

Method Summary
 boolean equals(Object obj)

 Compares this object against the specified object.

 int hashCode()
 Computes a hashcode for this Long.

 long longValue()
 Returns the value of this Long as a long value.

 String toString()
 Returns a String object representing this Long’s value.

static String toString(long i)
 Returns a new String object representing the specified integer.

static String toString(long i, int radix)
 Creates a string representation of the first argument in the radix specified by
the second argument.

Methods inherited from class java.lang.Object

getClass, notify, notifyAll, wait, wait, wait

Field Detail

MIN_VALUE
public static final long MIN_VALUE

The smallest value of type long.

MAX_VALUE
public static final long MAX_VALUE

The largest value of type long.

Constructor Detail

Long
public Long(long value)

CLDC Library API (beta 2) 59

CLDC Library API (beta 2)

Constructs a newly allocated Long object that represents the primitive long argument.
Parameters:

value - the value to be represented by the Long object.

Method Detail

toString
public static String toString(long i,
 int radix)

Creates a string representation of the first argument in the radix specified by the second argument.

If the radix is smaller than Character.MIN_RADIX or larger than
Character.MAX_RADIX, then the radix 10 is used instead.

If the first argument is negative, the first element of the result is the ASCII minus sign ’-’
(’\u002d’. If the first argument is not negative, no sign character appears in the result.

The remaining characters of the result represent the magnitude of the first argument. If the
magnitude is zero, it is represented by a single zero character ’0’ (’\u0030’); otherwise, the
first character of the representation of the magnitude will not be the zero character. The following
ASCII characters are used as digits:

 0123456789abcdefghijklmnopqrstuvwxyz

These are ’\u0030’ through ’\u0039’ and ’\u0061’ through ’\u007a’. If the radix is
N, then the first N of these characters are used as radix-N digits in the order shown. Thus, the
digits for hexadecimal (radix 16) are 0123456789abcdef. If uppercase letters are desired, the
String.toUpperCase() method may be called on the result:

 Long.toString(n, 16).toUpperCase()

Parameters:
i - a long.
radix - the radix.

Returns:
a string representation of the argument in the specified radix.

See Also:
Character.MAX_RADIX, Character.MIN_RADIX

toString
public static String toString(long i)

Returns a new String object representing the specified integer. The argument is converted to
signed decimal representation and returned as a string, exactly as if the argument and the radix 10
were given as arguments to the toString(long, int) method that takes two arguments.
Parameters:

i - a long to be converted.

60 CLDC Library API (beta 2)

CLDC Library API (beta 2)

Returns:
a string representation of the argument in base 10.

longValue
public long longValue()

Returns the value of this Long as a long value.
Returns:

the long value represented by this object.

toString
public String toString()

Returns a String object representing this Long’s value. The long integer value represented by this
Long object is converted to signed decimal representation and returned as a string, exactly as if
the long value were given as an argument to the toString(long) method that takes one
argument.
Returns:

a string representation of this object in base 10.
Overrides:

toString in class Object

hashCode
public int hashCode()

Computes a hashcode for this Long. The result is the exclusive OR of the two halves of the
primitive long value represented by this Long object. That is, the hashcode is the value of the
expression:

 (int)(this.longValue()^(this.longValue()>>>32))

Returns:
a hash code value for this object.

Overrides:
hashCode in class Object

equals
public boolean equals(Object obj)

Compares this object against the specified object. The result is true if and only if the argument
is not null and is a Long object that contains the same long value as this object.
Parameters:

obj - the object to compare with.
Returns:

true if the objects are the same; false otherwise.

CLDC Library API (beta 2) 61

CLDC Library API (beta 2)

Overrides:
equals in class Object

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

62 CLDC Library API (beta 2)

CLDC Library API (beta 2)

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

java.lang
Class Math
java.lang.Object
 |
 +--java.lang.Math

public final class Math
extends Object

The class Math contains methods for performing basic numeric operations.

Since:
1.3

Method Summary
static int abs(int a)

 Returns the absolute value of an int value.

static long abs(long a)
 Returns the absolute value of a long value.

static int max(int a, int b)
 Returns the greater of two int values.

static long max(long a, long b)
 Returns the greater of two long values.

static int min(int a, int b)
 Returns the smaller of two int values.

static long min(long a, long b)
 Returns the smaller of two long values.

Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, toString, wait, wait,
wait

Method Detail

CLDC Library API (beta 2) 63

CLDC Library API (beta 2)

abs
public static int abs(int a)

Returns the absolute value of an int value. If the argument is not negative, the argument is
returned. If the argument is negative, the negation of the argument is returned.

Note that if the argument is equal to the value of Integer.MIN_VALUE, the most negative
representable int value, the result is that same value, which is negative.
Parameters:

a - an int value.
Returns:

the absolute value of the argument.
See Also:

Integer.MIN_VALUE

abs
public static long abs(long a)

Returns the absolute value of a long value. If the argument is not negative, the argument is
returned. If the argument is negative, the negation of the argument is returned.

Note that if the argument is equal to the value of Long.MIN_VALUE, the most negative
representable long value, the result is that same value, which is negative.
Parameters:

a - a long value.
Returns:

the absolute value of the argument.
See Also:

Long.MIN_VALUE

max
public static int max(int a,
 int b)

Returns the greater of two int values. That is, the result is the argument closer to the value of
Integer.MAX_VALUE. If the arguments have the same value, the result is that same value.
Parameters:

a - an int value.
b - an int value.

Returns:
the larger of a and b.

See Also:
Long.MAX_VALUE

64 CLDC Library API (beta 2)

CLDC Library API (beta 2)

max
public static long max(long a,
 long b)

Returns the greater of two long values. That is, the result is the argument closer to the value of
Long.MAX_VALUE. If the arguments have the same value, the result is that same value.
Parameters:

a - a long value.
b - a long value.

Returns:
the larger of a and b.

See Also:
Long.MAX_VALUE

min
public static int min(int a,
 int b)

Returns the smaller of two int values. That is, the result the argument closer to the value of
Integer.MIN_VALUE. If the arguments have the same value, the result is that same value.
Parameters:

a - an int value.
b - an int value.

Returns:
the smaller of a and b.

See Also:
Long.MIN_VALUE

min
public static long min(long a,
 long b)

Returns the smaller of two long values. That is, the result is the argument closer to the value of
Long.MIN_VALUE. If the arguments have the same value, the result is that same value.
Parameters:

a - a long value.
b - a long value.

Returns:
the smaller of a and b.

See Also:
Long.MIN_VALUE

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

CLDC Library API (beta 2) 65

CLDC Library API (beta 2)

66 CLDC Library API (beta 2)

CLDC Library API (beta 2)

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

java.lang
Class NegativeArraySizeException
java.lang.Object
 |
 +--java.lang.Throwable
 |
 +--java.lang.Exception
 |
 +--java.lang.RuntimeException
 |
 +--java.lang.NegativeArraySizeException

public class NegativeArraySizeException
extends RuntimeException

Thrown if an application tries to create an array with negative size.

Since:
JDK1.0

Constructor Summary
NegativeArraySizeException()
 Constructs a NegativeArraySizeException with no detail message.

NegativeArraySizeException(String s)
 Constructs a NegativeArraySizeException with the specified detail message.

Methods inherited from class java.lang.Throwable

getMessage, printStackTrace, toString

Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, wait, wait, wait

Constructor Detail

CLDC Library API (beta 2) 67

CLDC Library API (beta 2)

NegativeArraySizeException
public NegativeArraySizeException()

Constructs a NegativeArraySizeException with no detail message.

NegativeArraySizeException
public NegativeArraySizeException(String s)

Constructs a NegativeArraySizeException with the specified detail message.
Parameters:

s - the detail message.

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

68 CLDC Library API (beta 2)

CLDC Library API (beta 2)

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

java.lang
Class NullPointerException
java.lang.Object
 |
 +--java.lang.Throwable
 |
 +--java.lang.Exception
 |
 +--java.lang.RuntimeException
 |
 +--java.lang.NullPointerException

public class NullPointerException
extends RuntimeException

Thrown when an application attempts to use null in a case where an object is required. These
include:

Calling the instance method of a null object.
Accessing or modifying the field of a null object.
Taking the length of null as if it were an array.
Accessing or modifying the slots of null as if it were an array.
Throwing null as if it were a Throwable value.

Applications should throw instances of this class to indicate other illegal uses of the null object.

Since:
JDK1.0

Constructor Summary
NullPointerException()
 Constructs a NullPointerException with no detail message.

NullPointerException(String s)
 Constructs a NullPointerException with the specified detail message.

Methods inherited from class java.lang.Throwable

getMessage, printStackTrace, toString

CLDC Library API (beta 2) 69

CLDC Library API (beta 2)

Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, wait, wait, wait

Constructor Detail

NullPointerException
public NullPointerException()

Constructs a NullPointerException with no detail message.

NullPointerException
public NullPointerException(String s)

Constructs a NullPointerException with the specified detail message.
Parameters:

s - the detail message.

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

70 CLDC Library API (beta 2)

CLDC Library API (beta 2)

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

java.lang
Class NumberFormatException
java.lang.Object
 |
 +--java.lang.Throwable
 |
 +--java.lang.Exception
 |
 +--java.lang.RuntimeException
 |
 +--java.lang.IllegalArgumentException
 |
 +--java.lang.NumberFormatException

public class NumberFormatException
extends IllegalArgumentException

Thrown to indicate that the application has attempted to convert a string to one of the numeric types,
but that the string does not have the appropriate format.

Since:
JDK1.0

See Also:
Integer.toString()

Constructor Summary
NumberFormatException()
 Constructs a NumberFormatException with no detail message.

NumberFormatException(String s)
 Constructs a NumberFormatException with the specified detail message.

Methods inherited from class java.lang.Throwable

getMessage, printStackTrace, toString

Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, wait, wait, wait

CLDC Library API (beta 2) 71

CLDC Library API (beta 2)

Constructor Detail

NumberFormatException
public NumberFormatException()

Constructs a NumberFormatException with no detail message.

NumberFormatException
public NumberFormatException(String s)

Constructs a NumberFormatException with the specified detail message.
Parameters:

s - the detail message.

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

72 CLDC Library API (beta 2)

CLDC Library API (beta 2)

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

java.lang
Class Object
java.lang.Object

public class Object

Class Object is the root of the class hierarchy. Every class has Object as a superclass. All objects,
including arrays, implement the methods of this class.

Since:
JDK1.0

See Also:
Class

Constructor Summary
Object()

CLDC Library API (beta 2) 73

CLDC Library API (beta 2)

Method Summary
 boolean equals(Object obj)

 Indicates whether some other object is "equal to" this one.

 Class getClass()
 Returns the runtime class of an object.

 int hashCode()
 Returns a hash code value for the object.

 void notify()
 Wakes up a single thread that is waiting on this object’s monitor.

 void notifyAll()
 Wakes up all threads that are waiting on this object’s monitor.

 String toString()
 Returns a string representation of the object.

 void wait()
 Causes current thread to wait until another thread invokes the notify() method
or the notifyAll() method for this object.

 void wait(long timeout)
 Causes current thread to wait until either another thread invokes the notify()
method or the notifyAll() method for this object, or a specified amount of time has
elapsed.

 void wait(long timeout, int nanos)
 Causes current thread to wait until another thread invokes the notify() method
or the notifyAll() method for this object, or some other thread interrupts the current
thread, or a certain amount of real time has elapsed.

Constructor Detail

Object
public Object()

Method Detail

getClass
public final Class getClass()

Returns the runtime class of an object. That Class object is the object that is locked by static
synchronized methods of the represented class.
Returns:

the object of type Class that represents the runtime class of the object.

74 CLDC Library API (beta 2)

CLDC Library API (beta 2)

hashCode
public int hashCode()

Returns a hash code value for the object. This method is supported for the benefit of hashtables
such as those provided by java.util.Hashtable.

The general contract of hashCode is:
Whenever it is invoked on the same object more than once during an execution of a Java
application, the hashCode method must consistently return the same integer, provided no
information used in equals comparisons on the object is modified. This integer need not
remain consistent from one execution of an application to another execution of the same
application.
If two objects are equal according to the equals(Object) method, then calling the
hashCode method on each of the two objects must produce the same integer result.
It is not required that if two objects are unequal according to the
equals(java.lang.Object) method, then calling the hashCode method on each of
the two objects must produce distinct integer results. However, the programmer should be
aware that producing distinct integer results for unequal objects may improve the
performance of hashtables.

As much as is reasonably practical, the hashCode method defined by class Object does return
distinct integers for distinct objects. (This is typically implemented by converting the internal
address of the object into an integer, but this implementation technique is not required by the
JavaTM programming language.)
Returns:

a hash code value for this object.
See Also:

equals(java.lang.Object), Hashtable

equals
public boolean equals(Object obj)

Indicates whether some other object is "equal to" this one.

The equals method implements an equivalence relation:
It is reflexive: for any reference value x, x.equals(x) should return true.
It is symmetric: for any reference values x and y, x.equals(y) should return true if and
only if y.equals(x) returns true.
It is transitive: for any reference values x, y, and z, if x.equals(y) returns true and
y.equals(z) returns true, then x.equals(z) should return true.
It is consistent: for any reference values x and y, multiple invocations of x.equals(y)
consistently return true or consistently return false, provided no information used in
equals comparisons on the object is modified.
For any non-null reference value x, x.equals(null) should return false.

The equals method for class Object implements the most discriminating possible equivalence
relation on objects; that is, for any reference values x and y, this method returns true if and only
if x and y refer to the same object (x==y has the value true).

CLDC Library API (beta 2) 75

CLDC Library API (beta 2)

Parameters:
obj - the reference object with which to compare.

Returns:
true if this object is the same as the obj argument; false otherwise.

See Also:
Boolean.hashCode(), Hashtable

toString
public String toString()

Returns a string representation of the object. In general, the toString method returns a string
that "textually represents" this object. The result should be a concise but informative
representation that is easy for a person to read. It is recommended that all subclasses override this
method.

The toString method for class Object returns a string consisting of the name of the class of
which the object is an instance, the at-sign character ‘@’, and the unsigned hexadecimal
representation of the hash code of the object. In other words, this method returns a string equal to
the value of:

 getClass().getName() + ’@’ + Integer.toHexString(hashCode())

Returns:
a string representation of the object.

notify
public final void notify()

Wakes up a single thread that is waiting on this object’s monitor. If any threads are waiting on
this object, one of them is chosen to be awakened. The choice is arbitrary and occurs at the
discretion of the implementation. A thread waits on an object’s monitor by calling one of the
wait methods.

The awakened thread will not be able to proceed until the current thread relinquishes the lock on
this object. The awakened thread will compete in the usual manner with any other threads that
might be actively competing to synchronize on this object; for example, the awakened thread
enjoys no reliable privilege or disadvantage in being the next thread to lock this object.

This method should only be called by a thread that is the owner of this object’s monitor. A thread
becomes the owner of the object’s monitor in one of three ways:

By executing a synchronized instance method of that object.
By executing the body of a synchronized statement that synchronizes on the object.
For objects of type Class, by executing a synchronized static method of that class.

Only one thread at a time can own an object’s monitor.
Throws:

IllegalMonitorStateException - if the current thread is not the owner of this object’s monitor.

76 CLDC Library API (beta 2)

CLDC Library API (beta 2)

See Also:
notifyAll(), wait()

notifyAll
public final void notifyAll()

Wakes up all threads that are waiting on this object’s monitor. A thread waits on an object’s
monitor by calling one of the wait methods.

The awakened threads will not be able to proceed until the current thread relinquishes the lock on
this object. The awakened threads will compete in the usual manner with any other threads that
might be actively competing to synchronize on this object; for example, the awakened threads
enjoy no reliable privilege or disadvantage in being the next thread to lock this object.

This method should only be called by a thread that is the owner of this object’s monitor. See the
notify method for a description of the ways in which a thread can become the owner of a
monitor.
Throws:

IllegalMonitorStateException - if the current thread is not the owner of this object’s monitor.
See Also:

notify(), wait()

wait
public final void wait(long timeout)
 throws InterruptedException

Causes current thread to wait until either another thread invokes the notify() method or the
notifyAll() method for this object, or a specified amount of time has elapsed.

The current thread must own this object’s monitor.

This method causes the current thread (call it T) to place itself in the wait set for this object and
then to relinquish any and all synchronization claims on this object. Thread T becomes disabled
for thread scheduling purposes and lies dormant until one of four things happens:

Some other thread invokes the notify method for this object and thread T happens to be
arbitrarily chosen as the thread to be awakened.
Some other thread invokes the notifyAll method for this object.
The specified amount of real time has elapsed, more or less. If timeout is zero, however,
then real time is not taken into consideration and the thread simply waits until notified.

The thread T is then removed from the wait set for this object and re-enabled for thread
scheduling. It then competes in the usual manner with other threads for the right to synchronize
on the object; once it has gained control of the object, all its synchronization claims on the object
are restored to the status quo ante - that is, to the situation as of the time that the wait method
was invoked. Thread T then returns from the invocation of the wait method. Thus, on return
from the wait method, the synchronization state of the object and of thread T is exactly as it was
when the wait method was invoked.

CLDC Library API (beta 2) 77

CLDC Library API (beta 2)

Note that the wait method, as it places the current thread into the wait set for this object, unlocks
only this object; any other objects on which the current thread may be synchronized remain
locked while the thread waits.

This method should only be called by a thread that is the owner of this object’s monitor. See the
notify method for a description of the ways in which a thread can become the owner of a
monitor.
Parameters:

timeout - the maximum time to wait in milliseconds.
Throws:

IllegalArgumentException - if the value of timeout is negative.
IllegalMonitorStateException - if the current thread is not the owner of the object’s monitor.
InterruptedException - if another thread has interrupted the current thread. The interrupted
status of the current thread is cleared when this exception is thrown.

See Also:
notify(), notifyAll()

wait
public final void wait(long timeout,
 int nanos)
 throws InterruptedException

Causes current thread to wait until another thread invokes the notify() method or the
notifyAll() method for this object, or some other thread interrupts the current thread, or a
certain amount of real time has elapsed.

This method is similar to the wait method of one argument, but it allows finer control over the
amount of time to wait for a notification before giving up. The amount of real time, measured in
nanoseconds, is given by:

 1000000*millis+nanos

In all other respects, this method does the same thing as the method wait(long) of one
argument. In particular, wait(0, 0) means the same thing as wait(0).

The current thread must own this object’s monitor. The thread releases ownership of this monitor
and waits until either of the following two conditions has occurred:

Another thread notifies threads waiting on this object’s monitor to wake up either through a
call to the notify method or the notifyAll method.
The timeout period, specified by timeout milliseconds plus nanos nanoseconds
arguments, has elapsed.

The thread then waits until it can re-obtain ownership of the monitor and resumes execution

This method should only be called by a thread that is the owner of this object’s monitor. See the
notify method for a description of the ways in which a thread can become the owner of a
monitor.
Parameters:

timeout - the maximum time to wait in milliseconds.
nanos - additional time, in nanoseconds range 0-999999.

78 CLDC Library API (beta 2)

CLDC Library API (beta 2)

Throws:
IllegalArgumentException - if the value of timeout is negative or the value of nanos is not in
the range 0-999999.
IllegalMonitorStateException - if the current thread is not the owner of this object’s monitor.
InterruptedException - if another thread has interrupted the current thread. The interrupted
status of the current thread is cleared when this exception is thrown.

wait
public final void wait()
 throws InterruptedException

Causes current thread to wait until another thread invokes the notify() method or the
notifyAll() method for this object. In other word’s this method behaves exactly as if it
simply performs the call wait(0).

The current thread must own this object’s monitor. The thread releases ownership of this monitor
and waits until another thread notifies threads waiting on this object’s monitor to wake up either
through a call to the notify method or the notifyAll method. The thread then waits until it
can re-obtain ownership of the monitor and resumes execution.

This method should only be called by a thread that is the owner of this object’s monitor. See the
notify method for a description of the ways in which a thread can become the owner of a
monitor.
Throws:

IllegalMonitorStateException - if the current thread is not the owner of the object’s monitor.
InterruptedException - if another thread has interrupted the current thread. The interrupted
status of the current thread is cleared when this exception is thrown.

See Also:
notify(), notifyAll()

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

CLDC Library API (beta 2) 79

CLDC Library API (beta 2)

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

java.lang
Class OutOfMemoryError
java.lang.Object
 |
 +--java.lang.Throwable
 |
 +--java.lang.Error
 |
 +--java.lang.VirtualMachineError
 |
 +--java.lang.OutOfMemoryError

public class OutOfMemoryError
extends VirtualMachineError

Thrown when the Java Virtual Machine cannot allocate an object because it is out of memory, and no
more memory could be made available by the garbage collector.

Since:
JDK1.0

Constructor Summary
OutOfMemoryError()
 Constructs an OutOfMemoryError with no detail message.

OutOfMemoryError(String s)
 Constructs an OutOfMemoryError with the specified detail message.

Methods inherited from class java.lang.Throwable

getMessage, printStackTrace, toString

Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, wait, wait, wait

Constructor Detail

80 CLDC Library API (beta 2)

CLDC Library API (beta 2)

OutOfMemoryError
public OutOfMemoryError()

Constructs an OutOfMemoryError with no detail message.

OutOfMemoryError
public OutOfMemoryError(String s)

Constructs an OutOfMemoryError with the specified detail message.
Parameters:

s - the detail message.

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

CLDC Library API (beta 2) 81

CLDC Library API (beta 2)

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

java.lang
Interface Runnable
All Known Implementing Classes:

Thread

public abstract interface Runnable

The Runnable interface should be implemented by any class whose instances are intended to be
executed by a thread. The class must define a method of no arguments called run.

This interface is designed to provide a common protocol for objects that wish to execute code while
they are active. For example, Runnable is implemented by class Thread. Being active simply
means that a thread has been started and has not yet been stopped.

In addition, Runnable provides the means for a class to be active while not subclassing Thread. A
class that implements Runnable can run without subclassing Thread by instantiating a Thread
instance and passing itself in as the target. In most cases, the Runnable interface should be used if
you are only planning to override the run() method and no other Thread methods. This is
important because classes should not be subclassed unless the programmer intends on modifying or
enhancing the fundamental behavior of the class.

Since:
JDK1.0

See Also:
Thread

Method Summary
 void run()

 When an object implementing interface Runnable is used to create a thread, starting
the thread causes the object’s run method to be called in that separately executing thread.

Method Detail

run
public void run()

82 CLDC Library API (beta 2)

CLDC Library API (beta 2)

When an object implementing interface Runnable is used to create a thread, starting the thread
causes the object’s run method to be called in that separately executing thread.

The general contract of the method run is that it may take any action whatsoever.
See Also:

Thread.run()

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

CLDC Library API (beta 2) 83

CLDC Library API (beta 2)

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

java.lang
Class Runtime
java.lang.Object
 |
 +--java.lang.Runtime

public class Runtime
extends Object

Every Java application has a single instance of class Runtime that allows the application to interface
with the environment in which the application is running. The current runtime can be obtained from
the getRuntime method.

An application cannot create its own instance of this class.

Since:
JDK1.0

See Also:
getRuntime()

Method Summary
 void exit(int status)

 Terminates the currently running Java application.

 long freeMemory()
 Returns the amount of free memory in the system.

 void gc()
 Runs the garbage collector.

static Runtime getRuntime()
 Returns the runtime object associated with the current Java application.

 long totalMemory()
 Returns the total amount of memory in the Java Virtual Machine.

Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, toString, wait, wait,
wait

84 CLDC Library API (beta 2)

CLDC Library API (beta 2)

Method Detail

getRuntime
public static Runtime getRuntime()

Returns the runtime object associated with the current Java application. Most of the methods of
class Runtime are instance methods and must be invoked with respect to the current runtime
object.
Returns:

the Runtime object associated with the current Java application.

exit
public void exit(int status)

Terminates the currently running Java application. This method never returns normally.

The argument serves as a status code; by convention, a nonzero status code indicates abnormal
termination.
Parameters:

status - exit status.
Since:

JDK1.0

freeMemory
public long freeMemory()

Returns the amount of free memory in the system. Calling the gc method may result in increasing
the value returned by freeMemory.
Returns:

an approximation to the total amount of memory currently available for future allocated
objects, measured in bytes.

totalMemory
public long totalMemory()

Returns the total amount of memory in the Java Virtual Machine. The value returned by this
method may vary over time, depending on the host environment.

Note that the amount of memory required to hold an object of any given type may be
implementation-dependent.
Returns:

the total amount of memory currently available for current and future objects, measured in
bytes.

CLDC Library API (beta 2) 85

CLDC Library API (beta 2)

gc
public void gc()

Runs the garbage collector. Calling this method suggests that the Java Virtual Machine expend
effort toward recycling unused objects in order to make the memory they currently occupy
available for quick reuse. When control returns from the method call, the Java Virtual Machine
has made its best effort to recycle all discarded objects.

The name gc stands for "garbage collector". The Java Virtual Machine performs this recycling
process automatically as needed, in a separate thread, even if the gc method is not invoked
explicitly.

The method System.gc() is hte conventional and convenient means of invoking this method.

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

86 CLDC Library API (beta 2)

CLDC Library API (beta 2)

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

java.lang
Class RuntimeException
java.lang.Object
 |
 +--java.lang.Throwable
 |
 +--java.lang.Exception
 |
 +--java.lang.RuntimeException

Direct Known Subclasses:
ArithmeticException, ArrayStoreException, ClassCastException, EmptyStackException,
IllegalArgumentException, IllegalMonitorStateException, IndexOutOfBoundsException,
NegativeArraySizeException, NoSuchElementException, NullPointerException,
SecurityException

public class RuntimeException
extends Exception

RuntimeException is the superclass of those exceptions that can be thrown during the normal
operation of the Java Virtual Machine.

A method is not required to declare in its throws clause any subclasses of RuntimeException
that might be thrown during the execution of the method but not caught.

Since:
JDK1.0

Constructor Summary
RuntimeException()
 Constructs a RuntimeException with no detail message.

RuntimeException(String s)
 Constructs a RuntimeException with the specified detail message.

Methods inherited from class java.lang.Throwable

getMessage, printStackTrace, toString

CLDC Library API (beta 2) 87

CLDC Library API (beta 2)

Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, wait, wait, wait

Constructor Detail

RuntimeException
public RuntimeException()

Constructs a RuntimeException with no detail message.

RuntimeException
public RuntimeException(String s)

Constructs a RuntimeException with the specified detail message.
Parameters:

s - the detail message.

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

88 CLDC Library API (beta 2)

CLDC Library API (beta 2)

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

java.lang
Class SecurityException
java.lang.Object
 |
 +--java.lang.Throwable
 |
 +--java.lang.Exception
 |
 +--java.lang.RuntimeException
 |
 +--java.lang.SecurityException

public class SecurityException
extends RuntimeException

Thrown by the security manager to indicate a security violation.

Since:
JDK1.0

Constructor Summary
SecurityException()
 Constructs a SecurityException with no detail message.

SecurityException(String s)
 Constructs a SecurityException with the specified detail message.

Methods inherited from class java.lang.Throwable

getMessage, printStackTrace, toString

Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, wait, wait, wait

Constructor Detail

CLDC Library API (beta 2) 89

CLDC Library API (beta 2)

SecurityException
public SecurityException()

Constructs a SecurityException with no detail message.

SecurityException
public SecurityException(String s)

Constructs a SecurityException with the specified detail message.
Parameters:

s - the detail message.

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

90 CLDC Library API (beta 2)

CLDC Library API (beta 2)

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

java.lang
Class Short
java.lang.Object
 |
 +--java.lang.Short

public final class Short
extends Object

The Short class is the standard wrapper for short values.

Since:
JDK1.1

Field Summary
static short MAX_VALUE

 The maximum value a Short can have.

static short MIN_VALUE
 The minimum value a Short can have.

Constructor Summary
Short(short value)
 Constructs a Short object initialized to the specified short value.

Method Summary
 boolean equals(Object obj)

 Compares this object to the specified object.

 int hashCode()
 Returns a hashcode for this Short.

 short shortValue()
 Returns the value of this Short as a short.

CLDC Library API (beta 2) 91

CLDC Library API (beta 2)

Methods inherited from class java.lang.Object

getClass, notify, notifyAll, toString, wait, wait, wait

Field Detail

MIN_VALUE
public static final short MIN_VALUE

The minimum value a Short can have.

MAX_VALUE
public static final short MAX_VALUE

The maximum value a Short can have.

Constructor Detail

Short
public Short(short value)

Constructs a Short object initialized to the specified short value.
Parameters:

value - the initial value of the Short

Method Detail

shortValue
public short shortValue()

Returns the value of this Short as a short.

hashCode
public int hashCode()

Returns a hashcode for this Short.
Overrides:

hashCode in class Object

92 CLDC Library API (beta 2)

CLDC Library API (beta 2)

equals
public boolean equals(Object obj)

Compares this object to the specified object.
Parameters:

obj - the object to compare with
Returns:

true if the objects are the same; false otherwise.
Overrides:

equals in class Object

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

CLDC Library API (beta 2) 93

CLDC Library API (beta 2)

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

java.lang
Class String
java.lang.Object
 |
 +--java.lang.String

public final class String
extends Object

The String class represents character strings. All string literals in Java programs, such as "abc",
are implemented as instances of this class.

Strings are constant; their values cannot be changed after they are created. String buffers support
mutable strings. Because String objects are immutable they can be shared. For example:

 String str = "abc";

is equivalent to:

 char data[] = {’a’, ’b’, ’c’};
 String str = new String(data);

Here are some more examples of how strings can be used:

 System.out.println("abc");
 String cde = "cde";
 System.out.println("abc" + cde);
 String c = "abc".substring(2,3);
 String d = cde.substring(1, 2);

The class String includes methods for examining individual characters of the sequence, for
comparing strings, for searching strings, for extracting substrings, and for creating a copy of a string
with all characters translated to uppercase or to lowercase.

The Java language provides special support for the string concatenation operator (+), and for
conversion of other objects to strings. String concatenation is implemented through the
StringBuffer class and its append method. String conversions are implemented through the
method toString, defined by Object and inherited by all classes in Java. For additional
information on string concatenation and conversion, see Gosling, Joy, and Steele, The Java Language
Specification.

Since:
JDK1.0

See Also:
Object.toString(), StringBuffer, StringBuffer.append(boolean),
StringBuffer.append(char), StringBuffer.append(char[]),
StringBuffer.append(char[], int, int), StringBuffer.append(int),

94 CLDC Library API (beta 2)

CLDC Library API (beta 2)

StringBuffer.append(long), StringBuffer.append(java.lang.Object),
StringBuffer.append(java.lang.String), Character encodings

Constructor Summary
String()
 Initializes a newly created String object so that it represents an empty character sequence.

String(byte[] bytes)
 Construct a new String by converting the specified array of bytes using the platform’s
default character encoding.

String(byte[] bytes, int off, int len)
 Construct a new String by converting the specified subarray of bytes using the platform’s
default character encoding.

String(byte[] bytes, int off, int len, String enc)
 Construct a new String by converting the specified subarray of bytes using the specified
character encoding.

String(byte[] bytes, String enc)
 Construct a new String by converting the specified array of bytes using the specified
character encoding.

String(char[] value)
 Allocates a new String so that it represents the sequence of characters currently contained
in the character array argument.

String(char[] value, int offset, int count)
 Allocates a new String that contains characters from a subarray of the character array
argument.

String(String value)
 Initializes a newly created String object so that it represents the same sequence of
characters as the argument; in other words, the newly created string is a copy of the argument string.

String(StringBuffer buffer)
 Allocates a new string that contains the sequence of characters currently contained in the
string buffer argument.

Method Summary
 char charAt(int index)

 Returns the character at the specified index.

 int compareTo(String anotherString)
 Compares two strings lexicographically.

 String concat(String str)
 Concatenates the specified string to the end of this string.

 boolean endsWith(String suffix)
 Tests if this string ends with the specified suffix.

CLDC Library API (beta 2) 95

CLDC Library API (beta 2)

 boolean equals(Object anObject)
 Compares this string to the specified object.

 boolean equalsIgnoreCase(String anotherString)
 Compares this String to another String, ignoring case considerations.

 byte[] getBytes()
 Convert this String into bytes according to the platform’s default character
encoding, storing the result into a new byte array.

 byte[] getBytes(String enc)
 Convert this String into bytes according to the specified character
encoding, storing the result into a new byte array.

 void getChars(int srcBegin, int srcEnd, char[] dst,
int dstBegin)
 Copies characters from this string into the destination character array.

 int hashCode()
 Returns a hashcode for this string.

 int indexOf(int ch)
 Returns the index within this string of the first occurrence of the specified
character.

 int indexOf(int ch, int fromIndex)
 Returns the index within this string of the first occurrence of the specified
character, starting the search at the specified index.

 int lastIndexOf(int ch)
 Returns the index within this string of the last occurrence of the specified
character.

 int lastIndexOf(int ch, int fromIndex)
 Returns the index within this string of the last occurrence of the specified
character, searching backward starting at the specified index.

 int length()
 Returns the length of this string.

 boolean regionMatches(boolean ignoreCase, int toffset,
String other, int ooffset, int len)
 Tests if two string regions are equal.

 String replace(char oldChar, char newChar)
 Returns a new string resulting from replacing all occurrences of oldChar in
this string with newChar.

 boolean startsWith(String prefix)
 Tests if this string starts with the specified prefix.

 boolean startsWith(String prefix, int toffset)
 Tests if this string starts with the specified prefix beginning a specified index.

 String substring(int beginIndex)
 Returns a new string that is a substring of this string.

 String substring(int beginIndex, int endIndex)
 Returns a new string that is a substring of this string.

96 CLDC Library API (beta 2)

CLDC Library API (beta 2)

 char[] toCharArray()
 Converts this string to a new character array.

 String toLowerCase()
 Converts all of the characters in this String to lower case.

 String toString()
 This object (which is already a string!) is itself returned.

 String toUpperCase()
 Converts all of the characters in this String to lower case.

static String valueOf(boolean b)
 Returns the string representation of the boolean argument.

static String valueOf(char c)
 Returns the string representation of the char argument.

static String valueOf(char[] data)
 Returns the string representation of the char array argument.

static String valueOf(char[] data, int offset, int count)
 Returns the string representation of a specific subarray of the char array
argument.

static String valueOf(int i)
 Returns the string representation of the int argument.

static String valueOf(long l)
 Returns the string representation of the long argument.

static String valueOf(Object obj)
 Returns the string representation of the Object argument.

Methods inherited from class java.lang.Object

getClass, notify, notifyAll, wait, wait, wait

Constructor Detail

String
public String()

Initializes a newly created String object so that it represents an empty character sequence.

CLDC Library API (beta 2) 97

CLDC Library API (beta 2)

String
public String(String value)

Initializes a newly created String object so that it represents the same sequence of characters as
the argument; in other words, the newly created string is a copy of the argument string.
Parameters:

value - a String.

String
public String(char[] value)

Allocates a new String so that it represents the sequence of characters currently contained in
the character array argument. The contents of the character array are copied; subsequent
modification of the character array does not affect the newly created string.
Parameters:

value - the initial value of the string.
Throws:

NullPointerException - if value is null.

String
public String(char[] value,
 int offset,
 int count)

Allocates a new String that contains characters from a subarray of the character array
argument. The offset argument is the index of the first character of the subarray and the
count argument specifies the length of the subarray. The contents of the subarray are copied;
subsequent modification of the character array does not affect the newly created string.
Parameters:

value - array that is the source of characters.
offset - the initial offset.
count - the length.

Throws:
IndexOutOfBoundsException - if the offset and count arguments index characters
outside the bounds of the value array.
NullPointerException - if value is null.

String
public String(byte[] bytes,
 int off,
 int len,
 String enc)
 throws UnsupportedEncodingException

Construct a new String by converting the specified subarray of bytes using the specified
character encoding. The length of the new String is a function of the encoding, and hence may
not be equal to the length of the subarray.

98 CLDC Library API (beta 2)

CLDC Library API (beta 2)

Parameters:
bytes - The bytes to be converted into characters
offset - Index of the first byte to convert
length - Number of bytes to convert
enc - The name of a character encoding

Throws:
UnsupportedEncodingException - If the named encoding is not supported

Since:
JDK1.1

String
public String(byte[] bytes,
 String enc)
 throws UnsupportedEncodingException

Construct a new String by converting the specified array of bytes using the specified character
encoding. The length of the new String is a function of the encoding, and hence may not be
equal to the length of the byte array.
Parameters:

bytes - The bytes to be converted into characters
enc - The name of a supported character encoding

Throws:
UnsupportedEncodingException - If the named encoding is not supported

Since:
JDK1.1

String
public String(byte[] bytes,
 int off,
 int len)

Construct a new String by converting the specified subarray of bytes using the platform’s
default character encoding. The length of the new String is a function of the encoding, and
hence may not be equal to the length of the subarray.
Parameters:

bytes - The bytes to be converted into characters
offset - Index of the first byte to convert
length - Number of bytes to convert

Since:
JDK1.1

String
public String(byte[] bytes)

Construct a new String by converting the specified array of bytes using the platform’s default
character encoding. The length of the new String is a function of the encoding, and hence may
not be equal to the length of the byte array.

CLDC Library API (beta 2) 99

CLDC Library API (beta 2)

Parameters:
bytes - The bytes to be converted into characters

Since:
JDK1.1

String
public String(StringBuffer buffer)

Allocates a new string that contains the sequence of characters currently contained in the string
buffer argument. The contents of the string buffer are copied; subsequent modification of the
string buffer does not affect the newly created string.
Parameters:

buffer - a StringBuffer.
Throws:

NullPointerException - If buffer is null.

Method Detail

length
public int length()

Returns the length of this string. The length is equal to the number of 16-bit Unicode characters in
the string.
Returns:

the length of the sequence of characters represented by this object.

charAt
public char charAt(int index)

Returns the character at the specified index. An index ranges from 0 to length() - 1. The
first character of the sequence is at index 0, the next at index 1, and so on, as for array indexing.
Parameters:

index - the index of the character.
Returns:

the character at the specified index of this string. The first character is at index 0.
Throws:

IndexOutOfBoundsException - if the index argument is negative or not less than the length
of this string.

getChars
public void getChars(int srcBegin,
 int srcEnd,
 char[] dst,
 int dstBegin)

100 CLDC Library API (beta 2)

CLDC Library API (beta 2)

Copies characters from this string into the destination character array.

The first character to be copied is at index srcBegin; the last character to be copied is at index
srcEnd-1 (thus the total number of characters to be copied is srcEnd-srcBegin). The
characters are copied into the subarray of dst starting at index dstBegin and ending at index:

 dstbegin + (srcEnd-srcBegin) - 1

Parameters:
srcBegin - index of the first character in the string to copy.
srcEnd - index after the last character in the string to copy.
dst - the destination array.
dstBegin - the start offset in the destination array.

Throws:
IndexOutOfBoundsException - If any of the following is true:

srcBegin is negative.
srcBegin is greater than srcEnd
srcEnd is greater than the length of this string
dstBegin is negative
dstBegin+(srcEnd-srcBegin) is larger than dst.length

NullPointerException - if dst is null

getBytes
public byte[] getBytes(String enc)
 throws UnsupportedEncodingException

Convert this String into bytes according to the specified character encoding, storing the result
into a new byte array.
Parameters:

enc - A character-encoding name
Returns:

The resultant byte array
Throws:

UnsupportedEncodingException - If the named encoding is not supported
Since:

JDK1.1

getBytes
public byte[] getBytes()

Convert this String into bytes according to the platform’s default character encoding, storing
the result into a new byte array.
Returns:

the resultant byte array.
Since:

JDK1.1

CLDC Library API (beta 2) 101

CLDC Library API (beta 2)

equals
public boolean equals(Object anObject)

Compares this string to the specified object. The result is true if and only if the argument is not
null and is a String object that represents the same sequence of characters as this object.
Parameters:

anObject - the object to compare this String against.
Returns:

true if the String are equal; false otherwise.
Overrides:

equals in class Object
See Also:

compareTo(java.lang.String), equalsIgnoreCase(java.lang.String)

equalsIgnoreCase
public boolean equalsIgnoreCase(String anotherString)

Compares this String to another String, ignoring case considerations. Two strings are
considered equal ignoring case if they are of the same length, and corresponding characters in the
two strings are equal ignoring case.

Two characters c1 and c2 are considered the same, ignoring case if at least one of the following
is true:

The two characters are the same (as compared by the == operator).
Applying the method Character.toUpperCase(char) to each character produces the
same result.
Applying the method Character.toLowerCase(char) to each character produces the
same result.

Parameters:
anotherString - the String to compare this String against.

Returns:
true if the argument is not null and the Strings are equal, ignoring case; false
otherwise.

See Also:
equals(Object), Character.toLowerCase(char),
Character.toUpperCase(char)

compareTo
public int compareTo(String anotherString)

Compares two strings lexicographically. The comparison is based on the Unicode value of each
character in the strings. The character sequence represented by this String object is compared
lexicographically to the character sequence represented by the argument string. The result is a
negative integer if this String object lexicographically precedes the argument string. The result
is a positive integer if this String object lexicographically follows the argument string. The
result is zero if the strings are equal; compareTo returns 0 exactly when the

102 CLDC Library API (beta 2)

CLDC Library API (beta 2)

equals(Object) method would return true.

This is the definition of lexicographic ordering. If two strings are different, then either they have
different characters at some index that is a valid index for both strings, or their lengths are
different, or both. If they have different characters at one or more index positions, let k be the
smallest such index; then the string whose character at position k has the smaller value, as
determined by using the < operator, lexicographically precedes the other string. In this case,
compareTo returns the difference of the two character values at position k in the two string --
that is, the value:

 this.charAt(k)-anotherString.charAt(k)

If there is no index position at which they differ, then the shorter string lexicographically precedes
the longer string. In this case, compareTo returns the difference of the lengths of the strings --
that is, the value:

 this.length()-anotherString.length()

Parameters:
anotherString - the String to be compared.

Returns:
the value 0 if the argument string is equal to this string; a value less than 0 if this string is
lexicographically less than the string argument; and a value greater than 0 if this string is
lexicographically greater than the string argument.

Throws:
NullPointerException - if anotherString is null.

regionMatches
public boolean regionMatches(boolean ignoreCase,
 int toffset,
 String other,
 int ooffset,
 int len)

Tests if two string regions are equal.

A substring of this String object is compared to a substring of the argument other. The result
is true if these substrings represent character sequences that are the same, ignoring case if and
only if ignoreCase is true. The substring of this String object to be compared begins at
index toffset and has length len. The substring of other to be compared begins at index
ooffset and has length len. The result is false if and only if at least one of the following is
true:

toffset is negative.
ooffset is negative.
toffset+len is greater than the length of this String object.
ooffset+len is greater than the length of the other argument.
There is some nonnegative integer k less than len such that:

 this.charAt(toffset+k) != other.charAt(ooffset+k)

CLDC Library API (beta 2) 103

CLDC Library API (beta 2)

ignoreCase is true and there is some nonnegative integer k less than len such that:

 Character.toLowerCase(this.charAt(toffset+k)) !=
Character.toLowerCase(other.charAt(ooffset+k))

and:

 Character.toUpperCase(this.charAt(toffset+k)) !=
 Character.toUpperCase(other.charAt(ooffset+k))

Parameters:
ignoreCase - if true, ignore case when comparing characters.
toffset - the starting offset of the subregion in this string.
other - the string argument.
ooffset - the starting offset of the subregion in the string argument.
len - the number of characters to compare.

Returns:
true if the specified subregion of this string matches the specified subregion of the string
argument; false otherwise. Whether the matching is exact or case insensitive depends on
the ignoreCase argument.

startsWith
public boolean startsWith(String prefix,
 int toffset)

Tests if this string starts with the specified prefix beginning a specified index.
Parameters:

prefix - the prefix.
toffset - where to begin looking in the string.

Returns:
true if the character sequence represented by the argument is a prefix of the substring of
this object starting at index toffset; false otherwise. The result is false if toffset
is negative or greater than the length of this String object; otherwise the result is the same
as the result of the expression

 this.subString(toffset).startsWith(prefix)

Throws:
NullPointerException - if prefix is null.

startsWith
public boolean startsWith(String prefix)

Tests if this string starts with the specified prefix.
Parameters:

prefix - the prefix.
Returns:

true if the character sequence represented by the argument is a prefix of the character
sequence represented by this string; false otherwise. Note also that true will be returned
if the argument is an empty string or is equal to this String object as determined by the

104 CLDC Library API (beta 2)

CLDC Library API (beta 2)

equals(Object) method.
Throws:

NullPointerException - if prefix is null.
Since:

JDK1. 0

endsWith
public boolean endsWith(String suffix)

Tests if this string ends with the specified suffix.
Parameters:

suffix - the suffix.
Returns:

true if the character sequence represented by the argument is a suffix of the character
sequence represented by this object; false otherwise. Note that the result will be true if
the argument is the empty string or is equal to this String object as determined by the
equals(Object) method.

Throws:
NullPointerException - if suffix is null.

hashCode
public int hashCode()

Returns a hashcode for this string. The hashcode for a String object is computed as

 s[0]*31^(n-1) + s[1]*31^(n-2) + ... + s[n-1]

using int arithmetic, where s[i] is the ith character of the string, n is the length of the string,
and ^ indicates exponentiation. (The hash value of the empty string is zero.)
Returns:

a hash code value for this object.
Overrides:

hashCode in class Object

indexOf
public int indexOf(int ch)

Returns the index within this string of the first occurrence of the specified character. If a character
with value ch occurs in the character sequence represented by this String object, then the index
of the first such occurrence is returned -- that is, the smallest value k such that:

 this.charAt(k) == ch

is true. If no such character occurs in this string, then -1 is returned.
Parameters:

ch - a character.

CLDC Library API (beta 2) 105

CLDC Library API (beta 2)

Returns:
the index of the first occurrence of the character in the character sequence represented by this
object, or -1 if the character does not occur.

indexOf
public int indexOf(int ch,
 int fromIndex)

Returns the index within this string of the first occurrence of the specified character, starting the
search at the specified index.

If a character with value ch occurs in the character sequence represented by this String object
at an index no smaller than fromIndex, then the index of the first such occurrence is
returned--that is, the smallest value k such that:

 (this.charAt(k) == ch) && (k >= fromIndex)

is true. If no such character occurs in this string at or after position fromIndex, then -1 is
returned.

There is no restriction on the value of fromIndex. If it is negative, it has the same effect as if it
were zero: this entire string may be searched. If it is greater than the length of this string, it has the
same effect as if it were equal to the length of this string: -1 is returned.
Parameters:

ch - a character.
fromIndex - the index to start the search from.

Returns:
the index of the first occurrence of the character in the character sequence represented by this
object that is greater than or equal to fromIndex, or -1 if the character does not occur.

lastIndexOf
public int lastIndexOf(int ch)

Returns the index within this string of the last occurrence of the specified character. That is, the
index returned is the largest value k such that:

 this.charAt(k) == ch

is true. The String is searched backwards starting at the last character.
Parameters:

ch - a character.
Returns:

the index of the last occurrence of the character in the character sequence represented by this
object, or -1 if the character does not occur.

106 CLDC Library API (beta 2)

CLDC Library API (beta 2)

lastIndexOf
public int lastIndexOf(int ch,
 int fromIndex)

Returns the index within this string of the last occurrence of the specified character, searching
backward starting at the specified index. That is, the index returned is the largest value k such
that:

 this.charAt(k) == ch) && (k <= fromIndex)

is true.
Parameters:

ch - a character.
fromIndex - the index to start the search from. There is no restriction on the value of
fromIndex. If it is greater than or equal to the length of this string, it has the same effect as
if it were equal to one less than the length of this string: this entire string may be searched. If
it is negative, it has the same effect as if it were -1: -1 is returned.

Returns:
the index of the last occurrence of the character in the character sequence represented by this
object that is less than or equal to fromIndex, or -1 if the character does not occur before
that point.

substring
public String substring(int beginIndex)

Returns a new string that is a substring of this string. The substring begins with the character at
the specified index and extends to the end of this string.

Examples:

 "unhappy".substring(2) returns "happy"
 "Harbison".substring(3) returns "bison"
 "emptiness".substring(9) returns "" (an empty string)

Parameters:
beginIndex - the beginning index, inclusive.

Returns:
the specified substring.

Throws:
IndexOutOfBoundsException - if beginIndex is negative or larger than the length of this
String object.

substring
public String substring(int beginIndex,
 int endIndex)

Returns a new string that is a substring of this string. The substring begins at the specified
beginIndex and extends to the character at index endIndex - 1. Thus the length of the
substring is endIndex-beginIndex.

CLDC Library API (beta 2) 107

CLDC Library API (beta 2)

Examples:

 "hamburger".substring(4, 8) returns "urge"
 "smiles".substring(1, 5) returns "mile"

Parameters:
beginIndex - the beginning index, inclusive.
endIndex - the ending index, exclusive.

Returns:
the specified substring.

Throws:
IndexOutOfBoundsException - if the beginIndex is negative, or endIndex is larger
than the length of this String object, or beginIndex is larger than endIndex.

concat
public String concat(String str)

Concatenates the specified string to the end of this string.

If the length of the argument string is 0, then this String object is returned. Otherwise, a new
String object is created, representing a character sequence that is the concatenation of the
character sequence represented by this String object and the character sequence represented by
the argument string.

Examples:

 "cares".concat("s") returns "caress"
 "to".concat("get").concat("her") returns "together"

Parameters:
str - the String that is concatenated to the end of this String.

Returns:
a string that represents the concatenation of this object’s characters followed by the string
argument’s characters.

Throws:
NullPointerException - if str is null.

replace
public String replace(char oldChar,
 char newChar)

Returns a new string resulting from replacing all occurrences of oldChar in this string with
newChar.

If the character oldChar does not occur in the character sequence represented by this String
object, then a reference to this String object is returned. Otherwise, a new String object is
created that represents a character sequence identical to the character sequence represented by this
String object, except that every occurrence of oldChar is replaced by an occurrence of
newChar.

108 CLDC Library API (beta 2)

CLDC Library API (beta 2)

Examples:

 "mesquite in your cellar".replace(’e’, ’o’)
 returns "mosquito in your collar"
 "the war of baronets".replace(’r’, ’y’)
 returns "the way of bayonets"
 "sparring with a purple porpoise".replace(’p’, ’t’)
 returns "starring with a turtle tortoise"
 "JonL".replace(’q’, ’x’) returns "JonL" (no change)

Parameters:
oldChar - the old character.
newChar - the new character.

Returns:
a string derived from this string by replacing every occurrence of oldChar with newChar.

toLowerCase
public String toLowerCase()

Converts all of the characters in this String to lower case.

Note - This only works for ISO-Latin-1
Returns:

the String, converted to lowercase.
See Also:

Character.toLowerCase(char), toUpperCase()

toUpperCase
public String toUpperCase()

Converts all of the characters in this String to lower case.

Note - This only works for ISO-Latin-1
Returns:

the String, converted to lowercase.
See Also:

Character.toLowerCase(char), toUpperCase()

toString
public String toString()

This object (which is already a string!) is itself returned.
Returns:

the string itself.
Overrides:

toString in class Object

CLDC Library API (beta 2) 109

CLDC Library API (beta 2)

toCharArray
public char[] toCharArray()

Converts this string to a new character array.
Returns:

a newly allocated character array whose length is the length of this string and whose contents
are initialized to contain the character sequence represented by this string.

valueOf
public static String valueOf(Object obj)

Returns the string representation of the Object argument.
Parameters:

obj - an Object.
Returns:

if the argument is null, then a string equal to "null"; otherwise, the value of
obj.toString() is returned.

See Also:
Object.toString()

valueOf
public static String valueOf(char[] data)

Returns the string representation of the char array argument. The contents of the character array
are copied; subsequent modification of the character array does not affect the newly created
string.
Parameters:

data - a char array.
Returns:

a newly allocated string representing the same sequence of characters contained in the
character array argument.

valueOf
public static String valueOf(char[] data,
 int offset,
 int count)

Returns the string representation of a specific subarray of the char array argument.

The offset argument is the index of the first character of the subarray. The count argument
specifies the length of the subarray. The contents of the subarray are copied; subsequent
modification of the character array does not affect the newly created string.
Parameters:

data - the character array.
offset - the initial offset into the value of the String.
count - the length of the value of the String.

110 CLDC Library API (beta 2)

CLDC Library API (beta 2)

Returns:
a newly allocated string representing the sequence of characters contained in the subarray of
the character array argument.

Throws:
NullPointerException - if data is null.
IndexOutOfBoundsException - if offset is negative, or count is negative, or
offset+count is larger than data.length.

valueOf
public static String valueOf(boolean b)

Returns the string representation of the boolean argument.
Parameters:

b - a boolean.
Returns:

if the argument is true, a string equal to "true" is returned; otherwise, a string equal to
"false" is returned.

valueOf
public static String valueOf(char c)

Returns the string representation of the char argument.
Parameters:

c - a char.
Returns:

a newly allocated string of length 1 containing as its single character the argument c.

valueOf
public static String valueOf(int i)

Returns the string representation of the int argument.

The representation is exactly the one returned by the Integer.toString method of one
argument.
Parameters:

i - an int.
Returns:

a newly allocated string containing a string representation of the int argument.
See Also:

Integer.toString(int, int)

CLDC Library API (beta 2) 111

CLDC Library API (beta 2)

valueOf
public static String valueOf(long l)

Returns the string representation of the long argument.

The representation is exactly the one returned by the Long.toString method of one argument.
Parameters:

l - a long.
Returns:

a newly allocated string containing a string representation of the long argument.
See Also:

Long.toString(long)

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

112 CLDC Library API (beta 2)

CLDC Library API (beta 2)

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

java.lang
Class StringBuffer
java.lang.Object
 |
 +--java.lang.StringBuffer

public final class StringBuffer
extends Object

A string buffer implements a mutable sequence of characters. A string buffer is like a String, but can
be modified. At any point in time it contains some particular sequence of characters, but the length and
content of the sequence can be changed through certain method calls.

String buffers are safe for use by multiple threads. The methods are synchronized where necessary so
that all the operations on any particular instance behave as if they occur in some serial order that is
consistent with the order of the method calls made by each of the individual threads involved.

String buffers are used by the compiler to implement the binary string concatenation operator +. For
example, the code:

 x = "a" + 4 + "c"

is compiled to the equivalent of:

 x = new StringBuffer().append("a").append(4).append("c")
 .toString()

which creates a new string buffer (initially empty), appends the string representation of each operand
to the string buffer in turn, and then converts the contents of the string buffer to a string. Overall, this
avoids creating many temporary strings.

The principal operations on a StringBuffer are the append and insert methods, which are
overloaded so as to accept data of any type. Each effectively converts a given datum to a string and
then appends or inserts the characters of that string to the string buffer. The append method always
adds these characters at the end of the buffer; the insert method adds the characters at a specified
point.

For example, if z refers to a string buffer object whose current contents are "start", then the method
call z.append("le") would cause the string buffer to contain "startle", whereas
z.insert(4, "le") would alter the string buffer to contain "starlet".

In general, if sb refers to an instance of a StringBuffer, then sb.append(x) has the same effect
as sb.insert(sb.length(), x).

CLDC Library API (beta 2) 113

CLDC Library API (beta 2)

Every string buffer has a capacity. As long as the length of the character sequence contained in the
string buffer does not exceed the capacity, it is not necessary to allocate a new internal buffer array. If
the internal buffer overflows, it is automatically made larger.

Since:
JDK1.0

See Also:
ByteArrayOutputStream, String

Constructor Summary
StringBuffer()
 Constructs a string buffer with no characters in it and an initial capacity of 16 characters.

StringBuffer(int length)
 Constructs a string buffer with no characters in it and an initial capacity specified by the
length argument.

StringBuffer(String str)
 Constructs a string buffer so that it represents the same sequence of characters as the string
argument; in other words, the initial contents of the string buffer is a copy of the argument string.

Method Summary
 StringBuffer append(boolean b)

 Appends the string representation of the boolean argument to the string
buffer.

 StringBuffer append(char c)
 Appends the string representation of the char argument to this string buffer.

 StringBuffer append(char[] str)
 Appends the string representation of the char array argument to this string
buffer.

 StringBuffer append(char[] str, int offset, int len)
 Appends the string representation of a subarray of the char array argument
to this string buffer.

 StringBuffer append(int i)
 Appends the string representation of the int argument to this string buffer.

 StringBuffer append(long l)
 Appends the string representation of the long argument to this string buffer.

 StringBuffer append(Object obj)
 Appends the string representation of the Object argument to this string
buffer.

 StringBuffer append(String str)
 Appends the string to this string buffer.

114 CLDC Library API (beta 2)

CLDC Library API (beta 2)

 int capacity()
 Returns the current capacity of the String buffer.

 char charAt(int index)
 The specified character of the sequence currently represented by the string
buffer, as indicated by the index argument, is returned.

 StringBuffer delete(int start, int end)
 Removes the characters in a substring of this StringBuffer.

 StringBuffer deleteCharAt(int index)
 Removes the character at the specified position in this StringBuffer
(shortening the StringBuffer by one character).

 void ensureCapacity(int minimumCapacity)
 Ensures that the capacity of the buffer is at least equal to the specified
minimum.

 void getChars(int srcBegin, int srcEnd, char[] dst,
int dstBegin)
 Characters are copied from this string buffer into the destination character
array dst.

 StringBuffer insert(int offset, boolean b)
 Inserts the string representation of the boolean argument into this string
buffer.

 StringBuffer insert(int offset, char c)
 Inserts the string representation of the char argument into this string buffer.

 StringBuffer insert(int offset, char[] str)
 Inserts the string representation of the char array argument into this string
buffer.

 StringBuffer insert(int offset, int i)
 Inserts the string representation of the second int argument into this string
buffer.

 StringBuffer insert(int offset, long l)
 Inserts the string representation of the long argument into this string buffer.

 StringBuffer insert(int offset, Object obj)
 Inserts the string representation of the Object argument into this string
buffer.

 StringBuffer insert(int offset, String str)
 Inserts the string into this string buffer.

 int length()
 Returns the length (character count) of this string buffer.

 StringBuffer reverse()
 The character sequence contained in this string buffer is replaced by the
reverse of the sequence.

 void setCharAt(int index, char ch)
 The character at the specified index of this string buffer is set to ch.

CLDC Library API (beta 2) 115

CLDC Library API (beta 2)

 void setLength(int newLength)
 Sets the length of this String buffer.

 String toString()
 Converts to a string representing the data in this string buffer.

Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, wait, wait, wait

Constructor Detail

StringBuffer
public StringBuffer()

Constructs a string buffer with no characters in it and an initial capacity of 16 characters.

StringBuffer
public StringBuffer(int length)

Constructs a string buffer with no characters in it and an initial capacity specified by the length
argument.
Parameters:

length - the initial capacity.
Throws:

NegativeArraySizeException - if the length argument is less than 0.

StringBuffer
public StringBuffer(String str)

Constructs a string buffer so that it represents the same sequence of characters as the string
argument; in other words, the initial contents of the string buffer is a copy of the argument string.
The initial capacity of the string buffer is 16 plus the length of the string argument.
Parameters:

str - the initial contents of the buffer.

Method Detail

116 CLDC Library API (beta 2)

CLDC Library API (beta 2)

length
public int length()

Returns the length (character count) of this string buffer.
Returns:

the length of the sequence of characters currently represented by this string buffer.

capacity
public int capacity()

Returns the current capacity of the String buffer. The capacity is the amount of storage available
for newly inserted characters; beyond which an allocation will occur.
Returns:

the current capacity of this string buffer.

ensureCapacity
public void ensureCapacity(int minimumCapacity)

Ensures that the capacity of the buffer is at least equal to the specified minimum. If the current
capacity of this string buffer is less than the argument, then a new internal buffer is allocated with
greater capacity. The new capacity is the larger of:

The minimumCapacity argument.
Twice the old capacity, plus 2.

If the minimumCapacity argument is nonpositive, this method takes no action and simply
returns.
Parameters:

minimumCapacity - the minimum desired capacity.

setLength
public void setLength(int newLength)

Sets the length of this String buffer. This string buffer is altered to represent a new character
sequence whose length is specified by the argument. For every nonnegative index k less than
newLength, the character at index k in the new character sequence is the same as the character
at index k in the old sequence if k is less than the length of the old character sequence; otherwise,
it is the null character ’’. In other words, if the newLength argument is less than the current
length of the string buffer, the string buffer is truncated to contain exactly the number of
characters given by the newLength argument.

If the newLength argument is greater than or equal to the current length, sufficient null
characters (’\u0000’) are appended to the string buffer so that length becomes the
newLength argument.

The newLength argument must be greater than or equal to 0.

CLDC Library API (beta 2) 117

CLDC Library API (beta 2)

Parameters:
newLength - the new length of the buffer.

Throws:
IndexOutOfBoundsException - if the newLength argument is negative.

See Also:
length()

charAt
public char charAt(int index)

The specified character of the sequence currently represented by the string buffer, as indicated by
the index argument, is returned. The first character of a string buffer is at index 0, the next at
index 1, and so on, for array indexing.

The index argument must be greater than or equal to 0, and less than the length of this string
buffer.
Parameters:

index - the index of the desired character.
Returns:

the character at the specified index of this string buffer.
Throws:

IndexOutOfBoundsException - if index is negative or greater than or equal to length().
See Also:

length()

getChars
public void getChars(int srcBegin,
 int srcEnd,
 char[] dst,
 int dstBegin)

Characters are copied from this string buffer into the destination character array dst. The first
character to be copied is at index srcBegin; the last character to be copied is at index
srcEnd-1. The total number of characters to be copied is srcEnd-srcBegin. The characters
are copied into the subarray of dst starting at index dstBegin and ending at index:

 dstbegin + (srcEnd-srcBegin) - 1

Parameters:
srcBegin - start copying at this offset in the string buffer.
srcEnd - stop copying at this offset in the string buffer.
dst - the array to copy the data into.
dstBegin - offset into dst.

Throws:
NullPointerException - if dst is null.
IndexOutOfBoundsException - if any of the following is true:

srcBegin is negative
dstBegin is negative
the srcBegin argument is greater than the srcEnd argument.

118 CLDC Library API (beta 2)

CLDC Library API (beta 2)

srcEnd is greater than this.length(), the current length of this string buffer.
dstBegin+srcEnd-srcBegin is greater than dst.length

setCharAt
public void setCharAt(int index,
 char ch)

The character at the specified index of this string buffer is set to ch. The string buffer is altered to
represent a new character sequence that is identical to the old character sequence, except that it
contains the character ch at position index.

The offset argument must be greater than or equal to 0, and less than the length of this string
buffer.
Parameters:

index - the index of the character to modify.
ch - the new character.

Throws:
IndexOutOfBoundsException - if index is negative or greater than or equal to length().

See Also:
length()

append
public StringBuffer append(Object obj)

Appends the string representation of the Object argument to this string buffer.

The argument is converted to a string as if by the method String.valueOf, and the characters
of that string are then appended to this string buffer.
Parameters:

obj - an Object.
Returns:

a reference to this StringBuffer object.
See Also:

String.valueOf(java.lang.Object), append(java.lang.String)

append
public StringBuffer append(String str)

Appends the string to this string buffer.

The characters of the String argument are appended, in order, to the contents of this string
buffer, increasing the length of this string buffer by the length of the argument. If str is null,
then the four characters "null" are appended to this string buffer.

Let n be the length of the old character sequence, the one contained in the string buffer just prior
to execution of the append method. Then the character at index k in the new character sequence
is equal to the character at index k in the old character sequence, if k is less than n; otherwise, it is

CLDC Library API (beta 2) 119

CLDC Library API (beta 2)

equal to the character at index k-n in the argument str.
Parameters:

str - a string.
Returns:

a reference to this StringBuffer.

append
public StringBuffer append(char[] str)

Appends the string representation of the char array argument to this string buffer.

The characters of the array argument are appended, in order, to the contents of this string buffer.
The length of this string buffer increases by the length of the argument.

The overall effect is exactly as if the argument were converted to a string by the method
String.valueOf(char[]) and the characters of that string were then appended to this
StringBuffer object.
Parameters:

str - the characters to be appended.
Returns:

a reference to this StringBuffer object.

append
public StringBuffer append(char[] str,
 int offset,
 int len)

Appends the string representation of a subarray of the char array argument to this string buffer.

Characters of the character array str, starting at index offset, are appended, in order, to the
contents of this string buffer. The length of this string buffer increases by the value of len.

The overall effect is exactly as if the arguments were converted to a string by the method
String.valueOf(char[],int,int) and the characters of that string were then appended
to this StringBuffer object.
Parameters:

str - the characters to be appended.
offset - the index of the first character to append.
len - the number of characters to append.

Returns:
a reference to this StringBuffer object.

append
public StringBuffer append(boolean b)

120 CLDC Library API (beta 2)

CLDC Library API (beta 2)

Appends the string representation of the boolean argument to the string buffer.

The argument is converted to a string as if by the method String.valueOf, and the characters
of that string are then appended to this string buffer.
Parameters:

b - a boolean.
Returns:

a reference to this StringBuffer.
See Also:

String.valueOf(boolean), append(java.lang.String)

append
public StringBuffer append(char c)

Appends the string representation of the char argument to this string buffer.

The argument is appended to the contents of this string buffer. The length of this string buffer
increases by 1.

The overall effect is exactly as if the argument were converted to a string by the method
String.valueOf(char) and the character in that string were then appended to this
StringBuffer object.
Parameters:

c - a char.
Returns:

a reference to this StringBuffer object.

append
public StringBuffer append(int i)

Appends the string representation of the int argument to this string buffer.

The argument is converted to a string as if by the method String.valueOf, and the characters
of that string are then appended to this string buffer.
Parameters:

i - an int.
Returns:

a reference to this StringBuffer object.
See Also:

String.valueOf(int), append(java.lang.String)

append
public StringBuffer append(long l)

Appends the string representation of the long argument to this string buffer.

CLDC Library API (beta 2) 121

CLDC Library API (beta 2)

The argument is converted to a string as if by the method String.valueOf, and the characters
of that string are then appended to this string buffer.
Parameters:

l - a long.
Returns:

a reference to this StringBuffer object.
See Also:

String.valueOf(long), append(java.lang.String)

delete
public StringBuffer delete(int start,
 int end)

Removes the characters in a substring of this StringBuffer. The substring begins at the
specified start and extends to the character at index end - 1 or to the end of the
StringBuffer if no such character exists. If start is equal to end, no changes are made.
Parameters:

start - The beginning index, inclusive.
end - The ending index, exclusive.

Returns:
This string buffer.

Throws:
StringIndexOutOfBoundsException - if start is negative, greater than length(), or
greater than end.

Since:
1.2

deleteCharAt
public StringBuffer deleteCharAt(int index)

Removes the character at the specified position in this StringBuffer (shortening the
StringBuffer by one character).
Parameters:

index - Index of character to remove
Returns:

This string buffer.
Throws:

StringIndexOutOfBoundsException - if the index is negative or greater than or equal to
length().

Since:
1.2

insert
public StringBuffer insert(int offset,
 Object obj)

122 CLDC Library API (beta 2)

CLDC Library API (beta 2)

Inserts the string representation of the Object argument into this string buffer.

The second argument is converted to a string as if by the method String.valueOf, and the
characters of that string are then inserted into this string buffer at the indicated offset.

The offset argument must be greater than or equal to 0, and less than or equal to the length of this
string buffer.
Parameters:

offset - the offset.
obj - an Object.

Returns:
a reference to this StringBuffer object.

Throws:
StringIndexOutOfBoundsException - if the offset is invalid.

See Also:
String.valueOf(java.lang.Object), insert(int, java.lang.String),
length()

insert
public StringBuffer insert(int offset,
 String str)

Inserts the string into this string buffer.

The characters of the String argument are inserted, in order, into this string buffer at the
indicated offset, moving up any characters originally above that position and increasing the length
of this string buffer by the length of the argument. If str is null, then the four characters
"null" are inserted into this string buffer.

The character at index k in the new character sequence is equal to:
the character at index k in the old character sequence, if k is less than offset
the character at index k-offset in the argument str, if k is not less than offset but is
less than offset+str.length()
the character at index k-str.length() in the old character sequence, if k is not less than
offset+str.length()

The offset argument must be greater than or equal to 0, and less than or equal to the length of this
string buffer.
Parameters:

offset - the offset.
str - a string.

Returns:
a reference to this StringBuffer object.

Throws:
StringIndexOutOfBoundsException - if the offset is invalid.

See Also:
length()

CLDC Library API (beta 2) 123

CLDC Library API (beta 2)

insert
public StringBuffer insert(int offset,
 char[] str)

Inserts the string representation of the char array argument into this string buffer.

The characters of the array argument are inserted into the contents of this string buffer at the
position indicated by offset. The length of this string buffer increases by the length of the
argument.

The overall effect is exactly as if the argument were converted to a string by the method
String.valueOf(char[]) and the characters of that string were then inserted into this
StringBuffer object at the position indicated by offset.
Parameters:

offset - the offset.
str - a character array.

Returns:
a reference to this StringBuffer object.

Throws:
StringIndexOutOfBoundsException - if the offset is invalid.

insert
public StringBuffer insert(int offset,
 boolean b)

Inserts the string representation of the boolean argument into this string buffer.

The second argument is converted to a string as if by the method String.valueOf, and the
characters of that string are then inserted into this string buffer at the indicated offset.

The offset argument must be greater than or equal to 0, and less than or equal to the length of this
string buffer.
Parameters:

offset - the offset.
b - a boolean.

Returns:
a reference to this StringBuffer object.

Throws:
StringIndexOutOfBoundsException - if the offset is invalid.

See Also:
String.valueOf(boolean), insert(int, java.lang.String), length()

insert
public StringBuffer insert(int offset,
 char c)

124 CLDC Library API (beta 2)

CLDC Library API (beta 2)

Inserts the string representation of the char argument into this string buffer.

The second argument is inserted into the contents of this string buffer at the position indicated by
offset. The length of this string buffer increases by one.

The overall effect is exactly as if the argument were converted to a string by the method
String.valueOf(char) and the character in that string were then inserted into this
StringBuffer object at the position indicated by offset.

The offset argument must be greater than or equal to 0, and less than or equal to the length of this
string buffer.
Parameters:

offset - the offset.
c - a char.

Returns:
a reference to this StringBuffer object.

Throws:
IndexOutOfBoundsException - if the offset is invalid.

See Also:
length()

insert
public StringBuffer insert(int offset,
 int i)

Inserts the string representation of the second int argument into this string buffer.

The second argument is converted to a string as if by the method String.valueOf, and the
characters of that string are then inserted into this string buffer at the indicated offset.

The offset argument must be greater than or equal to 0, and less than or equal to the length of this
string buffer.
Parameters:

offset - the offset.
i - an int.

Returns:
a reference to this StringBuffer object.

Throws:
StringIndexOutOfBoundsException - if the offset is invalid.

See Also:
String.valueOf(int), insert(int, java.lang.String), length()

insert
public StringBuffer insert(int offset,
 long l)

Inserts the string representation of the long argument into this string buffer.

CLDC Library API (beta 2) 125

CLDC Library API (beta 2)

The second argument is converted to a string as if by the method String.valueOf, and the
characters of that string are then inserted into this string buffer at the position indicated by
offset.

The offset argument must be greater than or equal to 0, and less than or equal to the length of this
string buffer.
Parameters:

offset - the offset.
l - a long.

Returns:
a reference to this StringBuffer object.

Throws:
StringIndexOutOfBoundsException - if the offset is invalid.

See Also:
String.valueOf(long), insert(int, java.lang.String), length()

reverse
public StringBuffer reverse()

The character sequence contained in this string buffer is replaced by the reverse of the sequence.

Let n be the length of the old character sequence, the one contained in the string buffer just prior
to execution of the reverse method. Then the character at index k in the new character
sequence is equal to the character at index n-k-1 in the old character sequence.
Returns:

a reference to this

toString
public String toString()

Converts to a string representing the data in this string buffer. A new String object is allocated
and initialized to contain the character sequence currently represented by this string buffer. This
String is then returned. Subsequent changes to the string buffer do not affect the contents of the
String.

Implementation advice: This method can be coded so as to create a new String object without
allocating new memory to hold a copy of the character sequence. Instead, the string can share the
memory used by the string buffer. Any subsequent operation that alters the content or capacity of
the string buffer must then make a copy of the internal buffer at that time. This strategy is
effective for reducing the amount of memory allocated by a string concatenation operation when
it is implemented using a string buffer.
Returns:

a string representation of the string buffer.
Overrides:

toString in class Object

126 CLDC Library API (beta 2)

CLDC Library API (beta 2)

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

CLDC Library API (beta 2) 127

CLDC Library API (beta 2)

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

java.lang
Class StringIndexOutOfBoundsException
java.lang.Object
 |
 +--java.lang.Throwable
 |
 +--java.lang.Exception
 |
 +--java.lang.RuntimeException
 |
 +--java.lang.IndexOutOfBoundsException
 |
 +--java.lang.StringIndexOutOfBoundsException

public class StringIndexOutOfBoundsException
extends IndexOutOfBoundsException

Thrown by the charAt method in class String and by other String methods to indicate that an
index is either negative or greater than or equal to the size of the string.

Since:
JDK1.0

See Also:
String.charAt(int)

Constructor Summary
StringIndexOutOfBoundsException()
 Constructs a StringIndexOutOfBoundsException with no detail message.

StringIndexOutOfBoundsException(int index)
 Constructs a new StringIndexOutOfBoundsException class with an argument
indicating the illegal index.

StringIndexOutOfBoundsException(String s)
 Constructs a StringIndexOutOfBoundsException with the specified detail message.

Methods inherited from class java.lang.Throwable

getMessage, printStackTrace, toString

128 CLDC Library API (beta 2)

CLDC Library API (beta 2)

Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, wait, wait, wait

Constructor Detail

StringIndexOutOfBoundsException
public StringIndexOutOfBoundsException()

Constructs a StringIndexOutOfBoundsException with no detail message.
Since:

JDK1.0.

StringIndexOutOfBoundsException
public StringIndexOutOfBoundsException(String s)

Constructs a StringIndexOutOfBoundsException with the specified detail message.
Parameters:

s - the detail message.

StringIndexOutOfBoundsException
public StringIndexOutOfBoundsException(int index)

Constructs a new StringIndexOutOfBoundsException class with an argument
indicating the illegal index.
Parameters:

index - the illegal index.

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

CLDC Library API (beta 2) 129

CLDC Library API (beta 2)

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

java.lang
Class System
java.lang.Object
 |
 +--java.lang.System

public final class System
extends Object

The System class contains several useful class fields and methods. It cannot be instantiated.

Since:
JDK1.0

Field Summary
static PrintStream err

 The "standard" error output stream.

static PrintStream out
 The "standard" output stream.

130 CLDC Library API (beta 2)

CLDC Library API (beta 2)

Method Summary
static void arraycopy(Object src, int src_position, Object dst,

int dst_position, int length)
 Copies an array from the specified source array, beginning at the specified
position, to the specified position of the destination array.

static long currentTimeMillis()
 Returns the current time in milliseconds.

static void exit(int status)
 Terminates the currently running Java application.

static void gc()
 Runs the garbage collector.

static String getProperty(String key)
 Gets the system property indicated by the specified key.

static int identityHashCode(Object x)
 Returns the same hashcode for the given object as would be returned by the
default method hashCode(), whether or not the given object’s class overrides
hashCode().

Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, toString, wait, wait,
wait

Field Detail

out
public static final PrintStream out

The "standard" output stream. This stream is already open and ready to accept output data.
Typically this stream corresponds to display output or another output destination specified by the
host environment or user.

For simple stand-alone Java applications, a typical way to write a line of output data is:

 System.out.println(data)

See the println methods in class PrintStream.
See Also:

PrintStream.println(), PrintStream.println(boolean),
PrintStream.println(char), PrintStream.println(char[]),
PrintStream.println(int), PrintStream.println(long),
PrintStream.println(java.lang.Object),

CLDC Library API (beta 2) 131

CLDC Library API (beta 2)

PrintStream.println(java.lang.String)

err
public static final PrintStream err

The "standard" error output stream. This stream is already open and ready to accept output data.

Typically this stream corresponds to display output or another output destination specified by the
host environment or user. By convention, this output stream is used to display error messages or
other information that should come to the immediate attention of a user even if the principal
output stream, the value of the variable out, has been redirected to a file or other destination that
is typically not continuously monitored.

Method Detail

currentTimeMillis
public static long currentTimeMillis()

Returns the current time in milliseconds.
Returns:

the difference, measured in milliseconds, between the current time and midnight, January 1,
1970 UTC.

arraycopy
public static void arraycopy(Object src,
 int src_position,
 Object dst,
 int dst_position,
 int length)

Copies an array from the specified source array, beginning at the specified position, to the
specified position of the destination array. A subsequence of array components are copied from
the source array referenced by src to the destination array referenced by dst. The number of
components copied is equal to the length argument. The components at positions srcOffset
through srcOffset+length-1 in the source array are copied into positions dstOffset
through dstOffset+length-1, respectively, of the destination array.

If the src and dst arguments refer to the same array object, then the copying is performed as if
the components at positions srcOffset through srcOffset+length-1 were first copied to
a temporary array with length components and then the contents of the temporary array were
copied into positions dstOffset through dstOffset+length-1 of the destination array.

If dst is null, then a NullPointerException is thrown.

If src is null, then a NullPointerException is thrown and the destination array is not
modified.

132 CLDC Library API (beta 2)

CLDC Library API (beta 2)

Otherwise, if any of the following is true, an ArrayStoreException is thrown and the
destination is not modified:

The src argument refers to an object that is not an array.
The dst argument refers to an object that is not an array.
The src argument and dst argument refer to arrays whose component types are different
primitive types.
The src argument refers to an array with a primitive component type and the dst argument
refers to an array with a reference component type.
The src argument refers to an array with a reference component type and the dst argument
refers to an array with a primitive component type.

Otherwise, if any of the following is true, an IndexOutOfBoundsException is thrown and
the destination is not modified:

The srcOffset argument is negative.
The dstOffset argument is negative.
The length argument is negative.
srcOffset+length is greater than src.length, the length of the source array.
dstOffset+length is greater than dst.length, the length of the destination array.

Otherwise, if any actual component of the source array from position srcOffset through
srcOffset+length-1 cannot be converted to the component type of the destination array by
assignment conversion, an ArrayStoreException is thrown. In this case, let k be the
smallest nonnegative integer less than length such that src[srcOffset+k] cannot be
converted to the component type of the destination array; when the exception is thrown, source
array components from positions srcOffset through srcOffset+k-1 will already have been
copied to destination array positions dstOffset through dstOffset+k-1 and no other
positions of the destination array will have been modified. (Because of the restrictions already
itemized, this paragraph effectively applies only to the situation where both arrays have
component types that are reference types.)
Parameters:

src - the source array.
src_position - start position in the source array.
dst - the destination array.
dst_position - pos start position in the destination data.
length - the number of array elements to be copied.

Throws:
IndexOutOfBoundsException - if copying would cause access of data outside array bounds.
ArrayStoreException - if an element in the src array could not be stored into the dest
array because of a type mismatch.
NullPointerException - if either src or dst is null.

identityHashCode
public static int identityHashCode(Object x)

Returns the same hashcode for the given object as would be returned by the default method
hashCode(), whether or not the given object’s class overrides hashCode(). The hashcode for the
null reference is zero.

CLDC Library API (beta 2) 133

CLDC Library API (beta 2)

Parameters:
x - object for which the hashCode is to be calculated

Returns:
the hashCode

Since:
JDK1.1

getProperty
public static String getProperty(String key)

Gets the system property indicated by the specified key.
Parameters:

key - the name of the system property.
Returns:

the string value of the system property, or null if there is no property with that key.
Throws:

NullPointerException - if key is null.
IllegalArgumentException - if key is empty.

exit
public static void exit(int status)

Terminates the currently running Java application. The argument serves as a status code; by
convention, a nonzero status code indicates abnormal termination.

This method calls the exit method in class Runtime. This method never returns normally.

The call System.exit(n) is effectively equivalent to the call:

 Runtime.getRuntime().exit(n)

Parameters:
status - exit status.

See Also:
Runtime.exit(int)

gc
public static void gc()

Runs the garbage collector.

Calling the gc method suggests that the Java Virtual Machine expend effort toward recycling
unused objects in order to make the memory they currently occupy available for quick reuse.
When control returns from the method call, the Java Virtual Machine has made a best effort to
reclaim space from all discarded objects.

134 CLDC Library API (beta 2)

CLDC Library API (beta 2)

The call System.gc() is effectively equivalent to the call:

 Runtime.getRuntime().gc()

See Also:
Runtime.gc()

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

CLDC Library API (beta 2) 135

CLDC Library API (beta 2)

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

java.lang
Class Thread
java.lang.Object
 |
 +--java.lang.Thread

public class Thread
extends Object
implements Runnable

A thread is a thread of execution in a program. The Java Virtual Machine allows an application to have
multiple threads of execution running concurrently.

Every thread has a priority. Threads with higher priority are executed in preference to threads with
lower priority.

There are two ways to create a new thread of execution. One is to declare a class to be a subclass of
Thread. This subclass should override the run method of class Thread. An instance of the subclass
can then be allocated and started. For example, a thread that computes primes larger than a stated value
could be written as follows:

 class PrimeThread extends Thread {
 long minPrime;
 PrimeThread(long minPrime) {
 this.minPrime = minPrime;
 }

 public void run() {
 // compute primes larger than minPrime
 . . .
 }
 }

The following code would then create a thread and start it running:

 PrimeThread p = new PrimeThread(143);
 p.start();

The other way to create a thread is to declare a class that implements the Runnable interface. That
class then implements the run method. An instance of the class can then be allocated, passed as an
argument when creating Thread, and started. The same example in this other style looks like the
following:

136 CLDC Library API (beta 2)

CLDC Library API (beta 2)

 class PrimeRun implements Runnable {
 long minPrime;
 PrimeRun(long minPrime) {
 this.minPrime = minPrime;
 }

 public void run() {
 // compute primes larger than minPrime
 . . .
 }
 }

The following code would then create a thread and start it running:

 PrimeRun p = new PrimeRun(143);
 new Thread(p).start();

Since:
JDK1.0

See Also:
Runnable, Runtime.exit(int), run()

Field Summary
static int MAX_PRIORITY

 The maximum priority that a thread can have.

static int MIN_PRIORITY
 The minimum priority that a thread can have.

static int NORM_PRIORITY
 The default priority that is assigned to a thread.

Constructor Summary
Thread()
 Allocates a new Thread object.

Thread(Runnable target)
 Allocates a new Thread object.

CLDC Library API (beta 2) 137

CLDC Library API (beta 2)

Method Summary
static int activeCount()

 Returns the current number of active threads in the VM.

static Thread currentThread()
 Returns a reference to the currently executing thread object.

 int getPriority()
 Returns this thread’s priority.

 boolean isAlive()
 Tests if this thread is alive.

 void join()
 Waits for this thread to die.

 void run()
 If this thread was constructed using a separate Runnable run object, then
that Runnable object’s run method is called; otherwise, this method does
nothing and returns.

 void setPriority(int newPriority)
 Changes the priority of this thread.

static void sleep(long millis)
 Causes the currently executing thread to sleep (temporarily cease execution)
for the specified number of milliseconds.

 void start()
 Causes this thread to begin execution; the Java Virtual Machine calls the run
method of this thread.

 String toString()
 Returns a string representation of this thread, including a unique number that
identifies the thread and the thread’s priority.

static void yield()
 Causes the currently executing thread object to temporarily pause and allow
other threads to execute.

Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, wait, wait, wait

Field Detail

138 CLDC Library API (beta 2)

CLDC Library API (beta 2)

MIN_PRIORITY
public static final int MIN_PRIORITY

The minimum priority that a thread can have.

NORM_PRIORITY
public static final int NORM_PRIORITY

The default priority that is assigned to a thread.

MAX_PRIORITY
public static final int MAX_PRIORITY

The maximum priority that a thread can have.

Constructor Detail

Thread
public Thread()

Allocates a new Thread object. This constructor has the same effect as Thread(null,
null, gname), where gname is a newly generated name. Automatically generated names are of
the form "Thread-"+n, where n is an integer.

Threads created this way must have overridden their run() method to actually do anything. An
example illustrating this method being used follows:

 import java.lang.*;

 class plain01 implements Runnable {
 String name;
 plain01() {
 name = null;
 }
 plain01(String s) {
 name = s;
 }
 public void run() {
 if (name == null)
 System.out.println("A new thread created");
 else
 System.out.println("A new thread with name " + name +
 " created");
 }
 }
 class threadtest01 {
 public static void main(String args[]) {
 int failed = 0 ;

 Thread t1 = new Thread();

CLDC Library API (beta 2) 139

CLDC Library API (beta 2)

 if (t1 != null)
 System.out.println("new Thread() succeed");
 else {
 System.out.println("new Thread() failed");
 failed++;
 }
 }
 }

See Also:
Runnable

Thread
public Thread(Runnable target)

Allocates a new Thread object. This constructor has the same effect as Thread(null,
target, gname), where gname is a newly generated name. Automatically generated names are
of the form "Thread-"+n, where n is an integer.
Parameters:

target - the object whose run method is called.

Method Detail

currentThread
public static Thread currentThread()

Returns a reference to the currently executing thread object.
Returns:

the currently executing thread.

yield
public static void yield()

Causes the currently executing thread object to temporarily pause and allow other threads to
execute.

sleep
public static void sleep(long millis)
 throws InterruptedException

Causes the currently executing thread to sleep (temporarily cease execution) for the specified
number of milliseconds. The thread does not lose ownership of any monitors.
Parameters:

millis - the length of time to sleep in milliseconds.
Throws:

InterruptedException - if another thread has interrupted the current thread. The interrupted
status of the current thread is cleared when this exception is thrown.

140 CLDC Library API (beta 2)

CLDC Library API (beta 2)

See Also:
Object.notify()

start
public void start()

Causes this thread to begin execution; the Java Virtual Machine calls the run method of this
thread.

The result is that two threads are running concurrently: the current thread (which returns from the
call to the start method) and the other thread (which executes its run method).
Throws:

IllegalThreadStateException - if the thread was already started.
See Also:

run()

run
public void run()

If this thread was constructed using a separate Runnable run object, then that Runnable
object’s run method is called; otherwise, this method does nothing and returns.

Subclasses of Thread should override this method.
Specified by:

run in interface Runnable
See Also:

start(), Runnable.run()

isAlive
public final boolean isAlive()

Tests if this thread is alive. A thread is alive if it has been started and has not yet died.
Returns:

true if this thread is alive; false otherwise.

setPriority
public final void setPriority(int newPriority)

Changes the priority of this thread.
Parameters:

newPriority - priority to set this thread to
Throws:

IllegalArgumentException - If the priority is not in the range MIN_PRIORITY to
MAX_PRIORITY.

CLDC Library API (beta 2) 141

CLDC Library API (beta 2)

See Also:
getPriority(), getPriority(), MAX_PRIORITY, MIN_PRIORITY

getPriority
public final int getPriority()

Returns this thread’s priority.
Returns:

this thread’s name.
See Also:

setPriority(int), setPriority(int)

activeCount
public static int activeCount()

Returns the current number of active threads in the VM.
Returns:

the current number of threads in this thread’s thread group.

join
public final void join()
 throws InterruptedException

Waits for this thread to die.
Throws:

InterruptedException - if another thread has interrupted the current thread. The interrupted
status of the current thread is cleared when this exception is thrown.

toString
public String toString()

Returns a string representation of this thread, including a unique number that identifies the thread
and the thread’s priority.
Returns:

a string representation of this thread.
Overrides:

toString in class Object

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

142 CLDC Library API (beta 2)

CLDC Library API (beta 2)

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

java.lang
Class Throwable
java.lang.Object
 |
 +--java.lang.Throwable

Direct Known Subclasses:
Error, Exception

public class Throwable
extends Object

The Throwable class is the superclass of all errors and exceptions in the Java language. Only objects
that are instances of this class (or of one of its subclasses) are thrown by the Java Virtual Machine or
can be thrown by the Java throw statement. Similarly, only this class or one of its subclasses can be
the argument type in a catch clause.

Instances of two subclasses, Error and Exception, are conventionally used to indicate that
exceptional situations have occurred. Typically, these instances are freshly created in the context of the
exceptional situation so as to include relevant information (such as stack trace data).

By convention, class Throwable and its subclasses have two constructors, one that takes no
arguments and one that takes a String argument that can be used to produce an error message.

A Throwable class contains a snapshot of the execution stack of its thread at the time it was created.
It can also contain a message string that gives more information about the error.

Here is one example of catching an exception:

 try {
 int a[] = new int[2];
 a[4];
 } catch (ArrayIndexOutOfBoundsException e) {
 System.out.println("exception: " + e.getMessage());
 e.printStackTrace();
 }

Since:
JDK1.0

CLDC Library API (beta 2) 143

CLDC Library API (beta 2)

Constructor Summary
Throwable()
 Constructs a new Throwable with null as its error message string.

Throwable(String message)
 Constructs a new Throwable with the specified error message.

Method Summary
 String getMessage()

 Returns the error message string of this throwable object.

 void printStackTrace()

 String toString()
 Returns a short description of this throwable object.

Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, wait, wait, wait

Constructor Detail

Throwable
public Throwable()

Constructs a new Throwable with null as its error message string. Also, the method

Throwable
public Throwable(String message)

Constructs a new Throwable with the specified error message.
Parameters:

message - the error message. The error message is saved for later retrieval by the
getMessage() method.

Method Detail

144 CLDC Library API (beta 2)

CLDC Library API (beta 2)

getMessage
public String getMessage()

Returns the error message string of this throwable object.
Returns:

the error message string of this Throwable object if it was created with an error message
string; or null if it was created with no error message.

toString
public String toString()

Returns a short description of this throwable object. If this Throwable object was created with
an error message string, then the result is the concatenation of three strings:

The name of the actual class of this object
": " (a colon and a space)
The result of the getMessage() method for this object

If this Throwable object was created with no error message string, then the name of the actual
class of this object is returned.
Returns:

a string representation of this Throwable.
Overrides:

toString in class Object

printStackTrace
public void printStackTrace()

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

CLDC Library API (beta 2) 145

CLDC Library API (beta 2)

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

java.lang
Class VirtualMachineError
java.lang.Object
 |
 +--java.lang.Throwable
 |
 +--java.lang.Error
 |
 +--java.lang.VirtualMachineError

Direct Known Subclasses:
OutOfMemoryError

public abstract class VirtualMachineError
extends Error

Thrown to indicate that the Java Virtual Machine is broken or has run out of resources necessary for it
to continue operating.

Since:
JDK1.0

Constructor Summary
VirtualMachineError()
 Constructs a VirtualMachineError with no detail message.

VirtualMachineError(String s)
 Constructs a VirtualMachineError with the specified detail message.

Methods inherited from class java.lang.Throwable

getMessage, printStackTrace, toString

Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, wait, wait, wait

146 CLDC Library API (beta 2)

CLDC Library API (beta 2)

Constructor Detail

VirtualMachineError
public VirtualMachineError()

Constructs a VirtualMachineError with no detail message.

VirtualMachineError
public VirtualMachineError(String s)

Constructs a VirtualMachineError with the specified detail message.
Parameters:

s - the detail message.

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

CLDC Library API (beta 2) 147

CLDC Library API (beta 2)

Overview Package Class Tree Deprecated Index Help
 PREV PACKAGE NEXT PACKAGE FRAMES NO FRAMES

Package java.io

Interface Summary

DataInput
The DataInput interface provides for reading bytes from a binary stream and
reconstructing from them data in any of the Java primitive types.

DataOutput
The DataOutput interface provides for converting data from any of the Java
primitive types to a series of bytes and writing these bytes to a binary stream.

Class Summary

ByteArrayInputStream
A ByteArrayInputStream contains an internal buffer that contains
bytes that may be read from the stream.

ByteArrayOutputStream
This class implements an output stream in which the data is written into a
byte array.

DataInputStream
A data input stream lets an application read primitive Java data types
from an underlying input stream in a machine-independent way.

DataOutputStream
A data input stream lets an application write primitive Java data types to
an output stream in a portable way.

InputStream
This abstract class is the superclass of all classes representing an input
stream of bytes.

InputStreamReader
An InputStreamReader is a bridge from byte streams to character
streams: It reads bytes and translates them into characters according to a
specified character encoding.

OutputStream
This abstract class is the superclass of all classes representing an output
stream of bytes.

OutputStreamWriter
An OutputStreamWriter is a bridge from character streams to byte
streams: Characters written to it are translated into bytes according to a
specified character encoding.

PrintStream
A PrintStream adds functionality to another output stream, namely
the ability to print representations of various data values conveniently.

Reader Abstract class for reading character streams.

Writer Abstract class for writing to character streams.

148 CLDC Library API (beta 2)

CLDC Library API (beta 2)

Exception Summary

EOFException
Signals that an end of file or end of stream has been reached
unexpectedly during input.

InterruptedIOException Signals that an I/O operation has been interrupted.

IOException Signals that an I/O exception of some sort has occurred.

UnsupportedEncodingException The Character Encoding is not supported.

UTFDataFormatException
Signals that a malformed UTF-8 string has been read in a data
input stream or by any class that implements the data input
interface.

Overview Package Class Tree Deprecated Index Help
 PREV PACKAGE NEXT PACKAGE FRAMES NO FRAMES

CLDC Library API (beta 2) 149

CLDC Library API (beta 2)

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

java.io
Class ByteArrayInputStream
java.lang.Object
 |
 +--java.io.InputStream
 |
 +--java.io.ByteArrayInputStream

public class ByteArrayInputStream
extends InputStream

A ByteArrayInputStream contains an internal buffer that contains bytes that may be read from
the stream. An internal counter keeps track of the next byte to be supplied by the read method.

Since:
JDK1.0

Field Summary
protected
 byte[]

buf
 An array of bytes that was provided by the creator of the stream.

protected int count
 The index one greater than the last valid character in the input stream
buffer.

protected int mark
 The currently marked position in the stream.

protected int pos
 The index of the next character to read from the input stream buffer.

Constructor Summary
ByteArrayInputStream(byte[] buf)
 Creates a ByteArrayInputStream so that it uses buf as its buffer array.

ByteArrayInputStream(byte[] buf, int offset, int length)
 Creates ByteArrayInputStream that uses buf as its buffer array.

150 CLDC Library API (beta 2)

CLDC Library API (beta 2)

Method Summary
 int available()

 Returns the number of bytes that can be read from this input stream without
blocking.

 void close()
 Closes this input stream and releases any system resources associated with the
stream.

 void mark(int readAheadLimit)
 Set the current marked position in the stream.

 boolean markSupported()
 Tests if ByteArrayInputStream supports mark/reset.

 int read()
 Reads the next byte of data from this input stream.

 int read(byte[] b, int off, int len)
 Reads up to len bytes of data into an array of bytes from this input stream.

 void reset()
 Resets the buffer to the marked position.

 long skip(long n)
 Skips n bytes of input from this input stream.

Methods inherited from class java.io.InputStream

read

Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, toString, wait, wait,
wait

Field Detail

buf
protected byte[] buf

An array of bytes that was provided by the creator of the stream. Elements buf[0] through
buf[count-1] are the only bytes that can ever be read from the stream; element buf[pos] is
the next byte to be read.

CLDC Library API (beta 2) 151

CLDC Library API (beta 2)

pos
protected int pos

The index of the next character to read from the input stream buffer. This value should always be
nonnegative and not larger than the value of count. The next byte to be read from the input
stream buffer will be buf[pos].

mark
protected int mark

The currently marked position in the stream. ByteArrayInputStream objects are marked at
position zero by default when constructed. They may be marked at another position within the
buffer by the mark() method. The current buffer position is set to this point by the reset()
method.
Since:

JDK1.1

count
protected int count

The index one greater than the last valid character in the input stream buffer. This value should
always be nonnegative and not larger than the length of buf. It is one greater than the position of
the last byte within buf that can ever be read from the input stream buffer.

Constructor Detail

ByteArrayInputStream
public ByteArrayInputStream(byte[] buf)

Creates a ByteArrayInputStream so that it uses buf as its buffer array. The buffer array is
not copied. The initial value of pos is 0 and the initial value of count is the length of buf.
Parameters:

buf - the input buffer.

ByteArrayInputStream
public ByteArrayInputStream(byte[] buf,
 int offset,
 int length)

Creates ByteArrayInputStream that uses buf as its buffer array. The initial value of pos
is offset and the initial value of count is offset+len. The buffer array is not copied.

152 CLDC Library API (beta 2)

CLDC Library API (beta 2)

Note that if bytes are simply read from the resulting input stream, elements buf[pos] through
buf[pos+len-1] will be read; however, if a reset operation is performed, then bytes
buf[0] through buf[pos-1] will then become available for input.
Parameters:

buf - the input buffer.
offset - the offset in the buffer of the first byte to read.
length - the maximum number of bytes to read from the buffer.

Method Detail

read
public int read()

Reads the next byte of data from this input stream. The value byte is returned as an int in the
range 0 to 255. If no byte is available because the end of the stream has been reached, the value
-1 is returned.

This read method cannot block.
Returns:

the next byte of data, or -1 if the end of the stream has been reached.
Overrides:

read in class InputStream

read
public int read(byte[] b,
 int off,
 int len)

Reads up to len bytes of data into an array of bytes from this input stream. If pos equals
count, then -1 is returned to indicate end of file. Otherwise, the number k of bytes read is equal
to the smaller of len and count-pos. If k is positive, then bytes buf[pos] through
buf[pos+k-1] are copied into b[off] through b[off+k-1] in the manner performed by
System.arraycopy. The value k is added into pos and k is returned.

This read method cannot block.
Parameters:

b - the buffer into which the data is read.
off - the start offset of the data.
len - the maximum number of bytes read.

Returns:
the total number of bytes read into the buffer, or -1 if there is no more data because the end
of the stream has been reached.

Overrides:
read in class InputStream

CLDC Library API (beta 2) 153

CLDC Library API (beta 2)

skip
public long skip(long n)

Skips n bytes of input from this input stream. Fewer bytes might be skipped if the end of the input
stream is reached. The actual number k of bytes to be skipped is equal to the smaller of n and
count-pos. The value k is added into pos and k is returned.
Parameters:

n - the number of bytes to be skipped.
Returns:

the actual number of bytes skipped.
Overrides:

skip in class InputStream

available
public int available()

Returns the number of bytes that can be read from this input stream without blocking. The value
returned is count - pos, which is the number of bytes remaining to be read from the input
buffer.
Returns:

the number of bytes that can be read from the input stream without blocking.
Overrides:

available in class InputStream

markSupported
public boolean markSupported()

Tests if ByteArrayInputStream supports mark/reset.
Overrides:

markSupported in class InputStream
Since:

JDK1.1

mark
public void mark(int readAheadLimit)

Set the current marked position in the stream. ByteArrayInputStream objects are marked at
position zero by default when constructed. They may be marked at another position within the
buffer by this method.
Overrides:

mark in class InputStream
Since:

JDK1.1

154 CLDC Library API (beta 2)

CLDC Library API (beta 2)

reset
public void reset()

Resets the buffer to the marked position. The marked position is the beginning unless another
position was marked. The value of pos is set to 0.
Overrides:

reset in class InputStream

close
public void close()
 throws IOException

Closes this input stream and releases any system resources associated with the stream.

Overrides:
close in class InputStream

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

CLDC Library API (beta 2) 155

CLDC Library API (beta 2)

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

java.io
Class ByteArrayOutputStream
java.lang.Object
 |
 +--java.io.OutputStream
 |
 +--java.io.ByteArrayOutputStream

public class ByteArrayOutputStream
extends OutputStream

This class implements an output stream in which the data is written into a byte array. The buffer
automatically grows as data is written to it. The data can be retrieved using toByteArray() and
toString().

Since:
JDK1.0

Field Summary
protected byte[] buf

 The buffer where data is stored.

protected int count
 The number of valid bytes in the buffer.

Constructor Summary
ByteArrayOutputStream()
 Creates a new byte array output stream.

ByteArrayOutputStream(int size)
 Creates a new byte array output stream, with a buffer capacity of the specified size, in bytes.

156 CLDC Library API (beta 2)

CLDC Library API (beta 2)

Method Summary
 void close()

 Closes this output stream and releases any system resources associated with this
stream.

 void reset()
 Resets the count field of this byte array output stream to zero, so that all currently
accumulated output in the output stream is discarded.

 int size()
 Returns the current size of the buffer.

 byte[] toByteArray()
 Creates a newly allocated byte array.

 void write(byte[] b, int off, int len)
 Writes len bytes from the specified byte array starting at offset off to this byte
array output stream.

 void write(int b)
 Writes the specified byte to this byte array output stream.

Methods inherited from class java.io.OutputStream

flush, write

Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, toString, wait, wait,
wait

Field Detail

buf
protected byte[] buf

The buffer where data is stored.

count
protected int count

CLDC Library API (beta 2) 157

CLDC Library API (beta 2)

The number of valid bytes in the buffer.

Constructor Detail

ByteArrayOutputStream
public ByteArrayOutputStream()

Creates a new byte array output stream. The buffer capacity is initially 32 bytes, though its size
increases if necessary.

ByteArrayOutputStream
public ByteArrayOutputStream(int size)

Creates a new byte array output stream, with a buffer capacity of the specified size, in bytes.
Parameters:

size - the initial size.
Throws:

IllegalArgumentException - if size is negative.

Method Detail

write
public void write(int b)

Writes the specified byte to this byte array output stream.
Parameters:

b - the byte to be written.
Overrides:

write in class OutputStream

write
public void write(byte[] b,
 int off,
 int len)

Writes len bytes from the specified byte array starting at offset off to this byte array output
stream.
Parameters:

b - the data.
off - the start offset in the data.
len - the number of bytes to write.

Overrides:
write in class OutputStream

158 CLDC Library API (beta 2)

CLDC Library API (beta 2)

reset
public void reset()

Resets the count field of this byte array output stream to zero, so that all currently accumulated
output in the output stream is discarded. The output stream can be used again, reusing the already
allocated buffer space.
See Also:

ByteArrayInputStream.count

toByteArray
public byte[] toByteArray()

Creates a newly allocated byte array. Its size is the current size of this output stream and the valid
contents of the buffer have been copied into it.
Returns:

the current contents of this output stream, as a byte array.
See Also:

size()

size
public int size()

Returns the current size of the buffer.
Returns:

the value of the count field, which is the number of valid bytes in this output stream.
See Also:

count

close
public void close()
 throws IOException

Closes this output stream and releases any system resources associated with this stream. A closed
stream cannot perform output operations and cannot be reopened.

Overrides:
close in class OutputStream

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

CLDC Library API (beta 2) 159

CLDC Library API (beta 2)

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

java.io
Interface DataInput
All Known Subinterfaces:

Datagram

All Known Implementing Classes:
DataInputStream

public abstract interface DataInput

The DataInput interface provides for reading bytes from a binary stream and reconstructing from
them data in any of the Java primitive types. There is also a facility for reconstructing a String from
data in Java modified UTF-8 format.

It is generally true of all the reading routines in this interface that if end of file is reached before the
desired number of bytes has been read, an EOFException (which is a kind of IOException) is
thrown. If any byte cannot be read for any reason other than end of file, an IOException other than
EOFException is thrown. In particular, an IOException may be thrown if the input stream has
been closed.

Since:
JDK1.0

See Also:
DataOutput

160 CLDC Library API (beta 2)

CLDC Library API (beta 2)

Method Summary
 boolean readBoolean()

 Reads one input byte and returns true if that byte is nonzero, false if that byte is
zero.

 byte readByte()
 Reads and returns one input byte.

 char readChar()
 Reads an input char and returns the char value.

 void readFully(byte[] b)
 Reads some bytes from an input stream and stores them into the buffer array b.

 void readFully(byte[] b, int off, int len)
 Reads len bytes from an input stream.

 int readInt()
 Reads four input bytes and returns an int value.

 long readLong()
 Reads eight input bytes and returns a long value.

 short readShort()
 Reads two input bytes and returns a short value.

 int readUnsignedByte()
 Reads one input byte, zero-extends it to type int, and returns the result, which is
therefore in the range 0 through 255.

 int readUnsignedShort()
 Reads two input bytes and returns an int value in the range 0 through 65535.

 String readUTF()
 Reads in a string that has been encoded using a modified UTF-8 format.

 int skipBytes(int n)
 Makes an attempt to skip over n bytes of data from the input stream, discarding the
skipped bytes.

Method Detail

readFully
public void readFully(byte[] b)
 throws IOException

Reads some bytes from an input stream and stores them into the buffer array b. The number of
bytes read is equal to the length of b.

This method blocks until one of the following conditions occurs:

CLDC Library API (beta 2) 161

CLDC Library API (beta 2)

b.length bytes of input data are available, in which case a normal return is made.
End of file is detected, in which case an EOFException is thrown.
An I/O error occurs, in which case an IOException other than EOFException is
thrown.

If b is null, a NullPointerException is thrown. If b.length is zero, then no bytes are
read. Otherwise, the first byte read is stored into element b[0], the next one into b[1], and so
on. If an exception is thrown from this method, then it may be that some but not all bytes of b
have been updated with data from the input stream.
Parameters:

b - the buffer into which the data is read.
Throws:

EOFException - if this stream reaches the end before reading all the bytes.
IOException - if an I/O error occurs.

readFully
public void readFully(byte[] b,
 int off,
 int len)
 throws IOException

Reads len bytes from an input stream.

This method blocks until one of the following conditions occurs:

len bytes of input data are available, in which case a normal return is made.
End of file is detected, in which case an EOFException is thrown.
An I/O error occurs, in which case an IOException other than EOFException is
thrown.

If b is null, a NullPointerException is thrown. If off is negative, or len is negative, or
off+len is greater than the length of the array b, then an IndexOutOfBoundsException
is thrown. If len is zero, then no bytes are read. Otherwise, the first byte read is stored into
element b[off], the next one into b[off+1], and so on. The number of bytes read is, at most,
equal to len.
Parameters:

b - the buffer into which the data is read.
off - an int specifying the offset into the data.
len - an int specifying the number of bytes to read.

Throws:
EOFException - if this stream reaches the end before reading all the bytes.
IOException - if an I/O error occurs.

skipBytes
public int skipBytes(int n)
 throws IOException

162 CLDC Library API (beta 2)

CLDC Library API (beta 2)

Makes an attempt to skip over n bytes of data from the input stream, discarding the skipped bytes.
However, it may skip over some smaller number of bytes, possibly zero. This may result from any
of a number of conditions; reaching end of file before n bytes have been skipped is only one
possibility. This method never throws an EOFException. The actual number of bytes skipped
is returned.
Parameters:

n - the number of bytes to be skipped.
Returns:

the number of bytes skipped, which is always n.
Throws:

EOFException - if this stream reaches the end before skipping all the bytes.
IOException - if an I/O error occurs.

readBoolean
public boolean readBoolean()
 throws IOException

Reads one input byte and returns true if that byte is nonzero, false if that byte is zero. This
method is suitable for reading the byte written by the writeBoolean method of interface
DataOutput.
Returns:

the boolean value read.
Throws:

EOFException - if this stream reaches the end before reading all the bytes.
IOException - if an I/O error occurs.

readByte
public byte readByte()
 throws IOException

Reads and returns one input byte. The byte is treated as a signed value in the range -128 through
127, inclusive. This method is suitable for reading the byte written by the writeByte method
of interface DataOutput.
Returns:

the 8-bit value read.
Throws:

EOFException - if this stream reaches the end before reading all the bytes.
IOException - if an I/O error occurs.

readUnsignedByte
public int readUnsignedByte()
 throws IOException

Reads one input byte, zero-extends it to type int, and returns the result, which is therefore in the
range 0 through 255. This method is suitable for reading the byte written by the writeByte
method of interface DataOutput if the argument to writeByte was intended to be a value in
the range 0 through 255.

CLDC Library API (beta 2) 163

CLDC Library API (beta 2)

Returns:
the unsigned 8-bit value read.

Throws:
EOFException - if this stream reaches the end before reading all the bytes.
IOException - if an I/O error occurs.

readShort
public short readShort()
 throws IOException

Reads two input bytes and returns a short value. Let a be the first byte read and b be the second
byte. The value returned is:

(short)((a << 8) * | (b & 0xff))

This method is suitable for reading the bytes written by the writeShort method of interface
DataOutput.
Returns:

the 16-bit value read.
Throws:

EOFException - if this stream reaches the end before reading all the bytes.
IOException - if an I/O error occurs.

readUnsignedShort
public int readUnsignedShort()
 throws IOException

Reads two input bytes and returns an int value in the range 0 through 65535. Let a be the first
byte read and b be the second byte. The value returned is:

(((a & 0xff) << 8) | (b & 0xff))

This method is suitable for reading the bytes written by the writeShort method of interface
DataOutput if the argument to writeShort was intended to be a value in the range 0
through 65535.
Returns:

the unsigned 16-bit value read.
Throws:

EOFException - if this stream reaches the end before reading all the bytes.
IOException - if an I/O error occurs.

readChar
public char readChar()
 throws IOException

164 CLDC Library API (beta 2)

CLDC Library API (beta 2)

Reads an input char and returns the char value. A Unicode char is made up of two bytes. Let
a be the first byte read and b be the second byte. The value returned is:

(char)((a << 8) | (b & 0xff))

This method is suitable for reading bytes written by the writeChar method of interface
DataOutput.
Returns:

the Unicode char read.
Throws:

EOFException - if this stream reaches the end before reading all the bytes.
IOException - if an I/O error occurs.

readInt
public int readInt()
 throws IOException

Reads four input bytes and returns an int value. Let a be the first byte read, b be the second
byte, c be the third byte, and d be the fourth byte. The value returned is:

 (((a & 0xff) << 24) | ((b & 0xff) << 16) |
 ((c & 0xff) << 8) | (d & 0xff))

This method is suitable for reading bytes written by the writeInt method of interface
DataOutput.
Returns:

the int value read.
Throws:

EOFException - if this stream reaches the end before reading all the bytes.
IOException - if an I/O error occurs.

readLong
public long readLong()
 throws IOException

Reads eight input bytes and returns a long value. Let a be the first byte read, b be the second
byte, c be the third byte, d be the fourth byte, e be the fifth byte, f be the sixth byte, g be the
seventh byte, and h be the eighth byte. The value returned is:

 (((long)(a & 0xff) << 56) |
 ((long)(b & 0xff) << 48) |
 ((long)(c & 0xff) << 40) |
 ((long)(d & 0xff) << 32) |
 ((long)(e & 0xff) << 24) |
 ((long)(f & 0xff) << 16) |
 ((long)(g & 0xff) << 8) |
 ((long)(h & 0xff)))

CLDC Library API (beta 2) 165

CLDC Library API (beta 2)

This method is suitable for reading bytes written by the writeLong method of interface
DataOutput.
Returns:

the long value read.
Throws:

EOFException - if this stream reaches the end before reading all the bytes.
IOException - if an I/O error occurs.

readUTF
public String readUTF()
 throws IOException

Reads in a string that has been encoded using a modified UTF-8 format. The general contract of
readUTF is that it reads a representation of a Unicode character string encoded in Java modified
UTF-8 format; this string of characters is then returned as a String.

First, two bytes are read and used to construct an unsigned 16-bit integer in exactly the manner of
the readUnsignedShort method . This integer value is called the UTF length and specifies
the number of additional bytes to be read. These bytes are then converted to characters by
considering them in groups. The length of each group is computed from the value of the first byte
of the group. The byte following a group, if any, is the first byte of the next group.

If the first byte of a group matches the bit pattern 0xxxxxxx (where x means "may be 0 or 1"),
then the group consists of just that byte. The byte is zero-extended to form a character.

If the first byte of a group matches the bit pattern 110xxxxx, then the group consists of that byte
a and a second byte b. If there is no byte b (because byte a was the last of the bytes to be read),
or if byte b does not match the bit pattern 10xxxxxx, then a UTFDataFormatException is
thrown. Otherwise, the group is converted to the character:

(char)(((a& 0x1F) << 6) | (b & 0x3F))

If the first byte of a group matches the bit pattern 1110xxxx, then the group consists of that byte
a and two more bytes b and c. If there is no byte c (because byte a was one of the last two of the
bytes to be read), or either byte b or byte c does not match the bit pattern 10xxxxxx, then a
UTFDataFormatException is thrown. Otherwise, the group is converted to the character:

 (char)(((a & 0x0F) << 12) | ((b & 0x3F) << 6) | (c & 0x3F))

If the first byte of a group matches the pattern 1111xxxx or the pattern 10xxxxxx, then a
UTFDataFormatException is thrown.

If end of file is encountered at any time during this entire process, then an EOFException is
thrown.

After every group has been converted to a character by this process, the characters are gathered, in
the same order in which their corresponding groups were read from the input stream, to form a
String, which is returned.

166 CLDC Library API (beta 2)

CLDC Library API (beta 2)

The writeUTF method of interface DataOutput may be used to write data that is suitable for
reading by this method.
Returns:

a Unicode string.
Throws:

EOFException - if this stream reaches the end before reading all the bytes.
IOException - if an I/O error occurs.
UTFDataFormatException - if the bytes do not represent a valid UTF-8 encoding of a string.

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

CLDC Library API (beta 2) 167

CLDC Library API (beta 2)

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

java.io
Class DataInputStream
java.lang.Object
 |
 +--java.io.InputStream
 |
 +--java.io.DataInputStream

public class DataInputStream
extends InputStream
implements DataInput

A data input stream lets an application read primitive Java data types from an underlying input stream
in a machine-independent way. An application uses a data output stream to write data that can later be
read by a data input stream.

Field Summary
protected InputStream in

 The input stream

Constructor Summary
DataInputStream(InputStream in)
 Creates a DataInputStream and saves its argument, the input stream in, for later use.

Method Summary
 int available()

 Returns the number of bytes that can be read from this input stream without
blocking.

 void close()
 Closes this input stream and releases any system resources associated with
the stream.

 void mark(int readlimit)
 Marks the current position in this input stream.

168 CLDC Library API (beta 2)

CLDC Library API (beta 2)

 boolean markSupported()
 Tests if this input stream supports the mark and reset methods.

 int read()
 Reads the next byte of data from this input stream.

 int read(byte[] b, int off, int len)
 Reads up to len bytes of data from this input stream into an array of bytes.

 boolean readBoolean()
 See the general contract of the readBoolean method of DataInput.

 byte readByte()
 See the general contract of the readByte method of DataInput.

 char readChar()
 See the general contract of the readChar method of DataInput.

 void readFully(byte[] b)
 See the general contract of the readFully method of DataInput.

 void readFully(byte[] b, int off, int len)
 See the general contract of the readFully method of DataInput.

 int readInt()
 See the general contract of the readInt method of DataInput.

 long readLong()
 See the general contract of the readLong method of DataInput.

 short readShort()
 See the general contract of the readShort method of DataInput.

 int readUnsignedByte()
 See the general contract of the readUnsignedByte method of
DataInput.

 int readUnsignedShort()
 See the general contract of the readUnsignedShort method of
DataInput.

 String readUTF()
 See the general contract of the readUTF method of DataInput.

static String readUTF(DataInput in)
 Reads from the stream in a representation of a Unicode character string
encoded in Java modified UTF-8 format; this string of characters is then returned as
a String.

 void reset()
 Repositions this stream to the position at the time the mark method was last
called on this input stream.

 long skip(long n)
 Skips over and discards n bytes of data from the input stream.

 int skipBytes(int n)
 See the general contract of the skipBytes method of DataInput.

CLDC Library API (beta 2) 169

CLDC Library API (beta 2)

Methods inherited from class java.io.InputStream

read

Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, toString, wait, wait,
wait

Field Detail

in
protected InputStream in

The input stream

Constructor Detail

DataInputStream
public DataInputStream(InputStream in)

Creates a DataInputStream and saves its argument, the input stream in, for later use.
Parameters:

in - the input stream.

Method Detail

read
public int read()
 throws IOException

Reads the next byte of data from this input stream. The value byte is returned as an int in the
range 0 to 255. If no byte is available because the end of the stream has been reached, the value
-1 is returned. This method blocks until input data is available, the end of the stream is detected,
or an exception is thrown.

This method simply performs in.read() and returns the result.
Returns:

the next byte of data, or -1 if the end of the stream is reached.

170 CLDC Library API (beta 2)

CLDC Library API (beta 2)

Throws:
IOException - if an I/O error occurs.

Overrides:
read in class InputStream

read
public int read(byte[] b,
 int off,
 int len)
 throws IOException

Reads up to len bytes of data from this input stream into an array of bytes. This method blocks
until some input is available.

This method simply performs in.read(b, off, len) and returns the result.
Parameters:

b - the buffer into which the data is read.
off - the start offset of the data.
len - the maximum number of bytes read.

Returns:
the total number of bytes read into the buffer, or -1 if there is no more data because the end
of the stream has been reached.

Throws:
IOException - if an I/O error occurs.

Overrides:
read in class InputStream

readFully
public void readFully(byte[] b)
 throws IOException

See the general contract of the readFully method of DataInput.

Bytes for this operation are read from the contained input stream.
Specified by:

readFully in interface DataInput
Parameters:

b - the buffer into which the data is read.
Throws:

EOFException - if this input stream reaches the end before reading all the bytes.
IOException - if an I/O error occurs.

readFully
public void readFully(byte[] b,
 int off,
 int len)
 throws IOException

CLDC Library API (beta 2) 171

CLDC Library API (beta 2)

See the general contract of the readFully method of DataInput.

Bytes for this operation are read from the contained input stream.
Specified by:

readFully in interface DataInput
Parameters:

b - the buffer into which the data is read.
off - the start offset of the data.
len - the number of bytes to read.

Throws:
EOFException - if this input stream reaches the end before reading all the bytes.
IOException - if an I/O error occurs.

skipBytes
public int skipBytes(int n)
 throws IOException

See the general contract of the skipBytes method of DataInput.

Bytes for this operation are read from the contained input stream.
Specified by:

skipBytes in interface DataInput
Parameters:

n - the number of bytes to be skipped.
Returns:

the actual number of bytes skipped.
Throws:

IOException - if an I/O error occurs.

readBoolean
public boolean readBoolean()
 throws IOException

See the general contract of the readBoolean method of DataInput.

Bytes for this operation are read from the contained input stream.
Specified by:

readBoolean in interface DataInput
Returns:

the boolean value read.
Throws:

EOFException - if this input stream has reached the end.
IOException - if an I/O error occurs.

172 CLDC Library API (beta 2)

CLDC Library API (beta 2)

readByte
public byte readByte()
 throws IOException

See the general contract of the readByte method of DataInput.

Bytes for this operation are read from the contained input stream.
Specified by:

readByte in interface DataInput
Returns:

the next byte of this input stream as a signed 8-bit byte.
Throws:

EOFException - if this input stream has reached the end.
IOException - if an I/O error occurs.

readUnsignedByte
public int readUnsignedByte()
 throws IOException

See the general contract of the readUnsignedByte method of DataInput.

Bytes for this operation are read from the contained input stream.
Specified by:

readUnsignedByte in interface DataInput
Returns:

the next byte of this input stream, interpreted as an unsigned 8-bit number.
Throws:

EOFException - if this input stream has reached the end.
IOException - if an I/O error occurs.

readShort
public short readShort()
 throws IOException

See the general contract of the readShort method of DataInput.

Bytes for this operation are read from the contained input stream.
Specified by:

readShort in interface DataInput
Returns:

the next two bytes of this input stream, interpreted as a signed 16-bit number.
Throws:

EOFException - if this input stream reaches the end before reading two bytes.
IOException - if an I/O error occurs.

CLDC Library API (beta 2) 173

CLDC Library API (beta 2)

readUnsignedShort
public int readUnsignedShort()
 throws IOException

See the general contract of the readUnsignedShort method of DataInput.

Bytes for this operation are read from the contained input stream.
Specified by:

readUnsignedShort in interface DataInput
Returns:

the next two bytes of this input stream, interpreted as an unsigned 16-bit integer.
Throws:

EOFException - if this input stream reaches the end before reading two bytes.
IOException - if an I/O error occurs.

readChar
public char readChar()
 throws IOException

See the general contract of the readChar method of DataInput.

Bytes for this operation are read from the contained input stream.
Specified by:

readChar in interface DataInput
Returns:

the next two bytes of this input stream as a Unicode character.
Throws:

EOFException - if this input stream reaches the end before reading two bytes.
IOException - if an I/O error occurs.

readInt
public int readInt()
 throws IOException

See the general contract of the readInt method of DataInput.

Bytes for this operation are read from the contained input stream.
Specified by:

readInt in interface DataInput
Returns:

the next four bytes of this input stream, interpreted as an int.
Throws:

EOFException - if this input stream reaches the end before reading four bytes.
IOException - if an I/O error occurs.

174 CLDC Library API (beta 2)

CLDC Library API (beta 2)

readLong
public long readLong()
 throws IOException

See the general contract of the readLong method of DataInput.

Bytes for this operation are read from the contained input stream.
Specified by:

readLong in interface DataInput
Returns:

the next eight bytes of this input stream, interpreted as a long.
Throws:

EOFException - if this input stream reaches the end before reading eight bytes.
IOException - if an I/O error occurs.

readUTF
public String readUTF()
 throws IOException

See the general contract of the readUTF method of DataInput.

Bytes for this operation are read from the contained input stream.
Specified by:

readUTF in interface DataInput
Returns:

a Unicode string.
Throws:

EOFException - if this input stream reaches the end before reading all the bytes.
IOException - if an I/O error occurs.

See Also:
readUTF(java.io.DataInput)

readUTF
public static String readUTF(DataInput in)
 throws IOException

Reads from the stream in a representation of a Unicode character string encoded in Java
modified UTF-8 format; this string of characters is then returned as a String. The details of the
modified UTF-8 representation are exactly the same as for the readUTF method of
DataInput.
Parameters:

in - a data input stream.
Returns:

a Unicode string.
Throws:

EOFException - if the input stream reaches the end before all the bytes.
IOException - if an I/O error occurs.
UTFDataFormatException - if the bytes do not represent a valid UTF-8 encoding of a

CLDC Library API (beta 2) 175

CLDC Library API (beta 2)

Unicode string.
See Also:

readUnsignedShort()

skip
public long skip(long n)
 throws IOException

Skips over and discards n bytes of data from the input stream. The skip method may, for a
variety of reasons, end up skipping over some smaller number of bytes, possibly 0. The actual
number of bytes skipped is returned.

This method simply performs in.skip(n).
Parameters:

n - the number of bytes to be skipped.
Returns:

the actual number of bytes skipped.
Throws:

IOException - if an I/O error occurs.
Overrides:

skip in class InputStream

available
public int available()
 throws IOException

Returns the number of bytes that can be read from this input stream without blocking.

This method simply performs in.available(n) and returns the result.
Returns:

the number of bytes that can be read from the input stream without blocking.
Throws:

IOException - if an I/O error occurs.
Overrides:

available in class InputStream

close
public void close()
 throws IOException

Closes this input stream and releases any system resources associated with the stream. This
method simply performs in.close().
Throws:

IOException - if an I/O error occurs.
Overrides:

close in class InputStream

176 CLDC Library API (beta 2)

CLDC Library API (beta 2)

mark
public void mark(int readlimit)

Marks the current position in this input stream. A subsequent call to the reset method
repositions this stream at the last marked position so that subsequent reads re-read the same bytes.

The readlimit argument tells this input stream to allow that many bytes to be read before the
mark position gets invalidated.

This method simply performs in.mark(readlimit).
Parameters:

readlimit - the maximum limit of bytes that can be read before the mark position
becomes invalid.

Overrides:
mark in class InputStream

reset
public void reset()
 throws IOException

Repositions this stream to the position at the time the mark method was last called on this input
stream.

This method simply performs in.reset().

Stream marks are intended to be used in situations where you need to read ahead a little to see
what’s in the stream. Often this is most easily done by invoking some general parser. If the stream
is of the type handled by the parse, it just chugs along happily. If the stream is not of that type, the
parser should toss an exception when it fails. If this happens within readlimit bytes, it allows the
outer code to reset the stream and try another parser.
Throws:

IOException - if the stream has not been marked or if the mark has been invalidated.
Overrides:

reset in class InputStream

markSupported
public boolean markSupported()

Tests if this input stream supports the mark and reset methods. This method simply performs
in.markSupported().
Returns:

true if this stream type supports the mark and reset method; false otherwise.
Overrides:

markSupported in class InputStream

CLDC Library API (beta 2) 177

CLDC Library API (beta 2)

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

178 CLDC Library API (beta 2)

CLDC Library API (beta 2)

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

java.io
Interface DataOutput
All Known Subinterfaces:

Datagram

All Known Implementing Classes:
DataOutputStream

public abstract interface DataOutput

The DataOutput interface provides for converting data from any of the Java primitive types to a
series of bytes and writing these bytes to a binary stream. There is also a facility for converting a
String into Java modified UTF-8 format and writing the resulting series of bytes.

For all the methods in this interface that write bytes, it is generally true that if a byte cannot be written
for any reason, an IOException is thrown.

Since:
JDK1.0

See Also:
DataInput

CLDC Library API (beta 2) 179

CLDC Library API (beta 2)

Method Summary
 void write(byte[] b)

 Writes to the output stream all the bytes in array b.

 void write(byte[] b, int off, int len)
 Writes len bytes from array b, in order, to the output stream.

 void write(int b)
 Writes to the output stream the eight low-order bits of the argument b.

 void writeBoolean(boolean v)
 Writes a boolean value to this output stream.

 void writeByte(int v)
 Writes to the output stream the eight low- order bits of the argument v.

 void writeChar(int v)
 Writes a char value, which is comprised of two bytes, to the output stream.

 void writeChars(String s)
 Writes every character in the string s, to the output stream, in order, two bytes per
character.

 void writeInt(int v)
 Writes an int value, which is comprised of four bytes, to the output stream.

 void writeLong(long v)
 Writes an long value, which is comprised of four bytes, to the output stream.

 void writeShort(int v)
 Writes two bytes to the output stream to represent the value of the argument.

 void writeUTF(String str)
 Writes two bytes of length information to the output stream, followed by the Java
modified UTF representation of every character in the string s.

Method Detail

write
public void write(int b)
 throws IOException

Writes to the output stream the eight low-order bits of the argument b. The 24 high-order bits of b
are ignored.
Parameters:

b - the byte to be written.
Throws:

IOException - if an I/O error occurs.

180 CLDC Library API (beta 2)

CLDC Library API (beta 2)

write
public void write(byte[] b)
 throws IOException

Writes to the output stream all the bytes in array b. If b is null, a NullPointerException
is thrown. If b.length is zero, then no bytes are written. Otherwise, the byte b[0] is written
first, then b[1], and so on; the last byte written is b[b.length-1].
Parameters:

b - the data.
Throws:

IOException - if an I/O error occurs.

write
public void write(byte[] b,
 int off,
 int len)
 throws IOException

Writes len bytes from array b, in order, to the output stream. If b is null, a
NullPointerException is thrown. If off is negative, or len is negative, or off+len is
greater than the length of the array b, then an IndexOutOfBoundsException is thrown. If
len is zero, then no bytes are written. Otherwise, the byte b[off] is written first, then
b[off+1], and so on; the last byte written is b[off+len-1].
Parameters:

b - the data.
off - the start offset in the data.
len - the number of bytes to write.

Throws:
IOException - if an I/O error occurs.

writeBoolean
public void writeBoolean(boolean v)
 throws IOException

Writes a boolean value to this output stream. If the argument v is true, the value (byte)1 is
written; if v is false, the value (byte)0 is written. The byte written by this method may be
read by the readBoolean method of interface DataInput, which will then return a
boolean equal to v.
Parameters:

v - the boolean to be written.
Throws:

IOException - if an I/O error occurs.

CLDC Library API (beta 2) 181

CLDC Library API (beta 2)

writeByte
public void writeByte(int v)
 throws IOException

Writes to the output stream the eight low- order bits of the argument v. The 24 high-order bits of
v are ignored. (This means that writeByte does exactly the same thing as write for an
integer argument.) The byte written by this method may be read by the readByte method of
interface DataInput, which will then return a byte equal to (byte)v.
Parameters:

v - the byte value to be written.
Throws:

IOException - if an I/O error occurs.

writeShort
public void writeShort(int v)
 throws IOException

Writes two bytes to the output stream to represent the value of the argument. The byte values to
be written, in the order shown, are:

 (byte)(0xff & (v >> 8))
 (byte)(0xff & v)

The bytes written by this method may be read by the readShort method of interface
DataInput , which will then return a short equal to (short)v.
Parameters:

v - the short value to be written.
Throws:

IOException - if an I/O error occurs.

writeChar
public void writeChar(int v)
 throws IOException

Writes a char value, which is comprised of two bytes, to the output stream. The byte values to
be written, in the order shown, are:

 (byte)(0xff & (v >> 8))
 (byte)(0xff & v)

The bytes written by this method may be read by the readChar method of interface
DataInput , which will then return a char equal to (char)v.
Parameters:

v - the char value to be written.
Throws:

IOException - if an I/O error occurs.

182 CLDC Library API (beta 2)

CLDC Library API (beta 2)

writeInt
public void writeInt(int v)
 throws IOException

Writes an int value, which is comprised of four bytes, to the output stream. The byte values to
be written, in the order shown, are:

 (byte)(0xff & (v >> 24))
 (byte)(0xff & (v >> 16))
 (byte)(0xff & (v >> 8))
 (byte)(0xff & v)

The bytes written by this method may be read by the readInt method of interface DataInput
, which will then return an int equal to v.
Parameters:

v - the int value to be written.
Throws:

IOException - if an I/O error occurs.

writeLong
public void writeLong(long v)
 throws IOException

Writes an long value, which is comprised of four bytes, to the output stream. The byte values to
be written, in the order shown, are:

 (byte)(0xff & (v >> 48))
 (byte)(0xff & (v >> 40))
 (byte)(0xff & (v >> 32))
 (byte)(0xff & (v >> 24))
 (byte)(0xff & (v >> 16))
 (byte)(0xff & (v >> 8))
 (byte)(0xff & v)

The bytes written by this method may be read by the readLong method of interface
DataInput , which will then return a long equal to v.
Parameters:

v - the long value to be written.
Throws:

IOException - if an I/O error occurs.

writeChars
public void writeChars(String s)
 throws IOException

Writes every character in the string s, to the output stream, in order, two bytes per character. If s
is null, a NullPointerException is thrown. If s.length is zero, then no characters are
written. Otherwise, the character s[0] is written first, then s[1], and so on; the last character

CLDC Library API (beta 2) 183

CLDC Library API (beta 2)

written is s[s.length-1]. For each character, two bytes are actually written, high-order byte
first, in exactly the manner of the writeChar method.
Parameters:

s - the string value to be written.
Throws:

IOException - if an I/O error occurs.

writeUTF
public void writeUTF(String str)
 throws IOException

Writes two bytes of length information to the output stream, followed by the Java modified UTF
representation of every character in the string s. If s is null, a NullPointerException is
thrown. Each character in the string s is converted to a group of one, two, or three bytes,
depending on the value of the character.

If a character c is in the range \u0001 through \u007f, it is represented by one byte:

(byte)c

If a character c is \u0000 or is in the range \u0080 through \u07ff, then it is represented by
two bytes, to be written in the order shown:

 (byte)(0xc0 | (0x1f & (c >> 6)))
 (byte)(0x80 | (0x3f & c))

If a character c is in the range \u0800 through uffff, then it is represented by three bytes, to
be written in the order shown:

 (byte)(0xe0 | (0x0f & (c >> 12)))
 (byte)(0x80 | (0x3f & (c >> 6)))
 (byte)(0x80 | (0x3f & c))

First, the total number of bytes needed to represent all the characters of s is calculated. If this
number is larger than 65535, then a UTFDataFormatError is thrown. Otherwise, this length
is written to the output stream in exactly the manner of the writeShort method; after this, the
one-, two-, or three-byte representation of each character in the string s is written.

The bytes written by this method may be read by the readUTF method of interface DataInput
, which will then return a String equal to s.
Parameters:

str - the string value to be written.
Throws:

IOException - if an I/O error occurs.

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

184 CLDC Library API (beta 2)

CLDC Library API (beta 2)

CLDC Library API (beta 2) 185

CLDC Library API (beta 2)

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

java.io
Class DataOutputStream
java.lang.Object
 |
 +--java.io.OutputStream
 |
 +--java.io.DataOutputStream

public class DataOutputStream
extends OutputStream
implements DataOutput

A data input stream lets an application write primitive Java data types to an output stream in a portable
way. An application can then use a data input stream to read the data back in.

Since:
JDK1.0

See Also:
DataInputStream

Field Summary
protected OutputStream out

 The output stream

Constructor Summary
DataOutputStream(OutputStream out)
 Creates a new data output stream to write data to the specified underlying output stream.

186 CLDC Library API (beta 2)

CLDC Library API (beta 2)

Method Summary
 void close()

 Closes this output stream and releases any system resources associated with the stream.

 void flush()
 Flushes this data output stream.

 void write(byte[] b, int off, int len)
 Writes len bytes from the specified byte array starting at offset off to the underlying
output stream.

 void write(int b)
 Writes the specified byte (the low eight bits of the argument b) to the underlying output
stream.

 void writeBoolean(boolean v)
 Writes a boolean to the underlying output stream as a 1-byte value.

 void writeByte(int v)
 Writes out a byte to the underlying output stream as a 1-byte value.

 void writeChar(int v)
 Writes a char to the underlying output stream as a 2-byte value, high byte first.

 void writeChars(String s)
 Writes a string to the underlying output stream as a sequence of characters.

 void writeInt(int v)
 Writes an int to the underlying output stream as four bytes, high byte first.

 void writeLong(long v)
 Writes a long to the underlying output stream as eight bytes, high byte first.

 void writeShort(int v)
 Writes a short to the underlying output stream as two bytes, high byte first.

 void writeUTF(String str)
 Writes a string to the underlying output stream using UTF-8 encoding in a
machine-independent manner.

Methods inherited from class java.io.OutputStream

write

Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, toString, wait, wait,
wait

CLDC Library API (beta 2) 187

CLDC Library API (beta 2)

Field Detail

out
protected OutputStream out

The output stream

Constructor Detail

DataOutputStream
public DataOutputStream(OutputStream out)

Creates a new data output stream to write data to the specified underlying output stream. The
counter written is set to zero.
Parameters:

out - the underlying output stream, to be saved for later use.

Method Detail

write
public void write(int b)
 throws IOException

Writes the specified byte (the low eight bits of the argument b) to the underlying output stream. If
no exception is thrown, the counter written is incremented by 1.

Implements the write method of OutputStream.
Specified by:

write in interface DataOutput
Parameters:

b - the byte to be written.
Throws:

IOException - if an I/O error occurs.
Overrides:

write in class OutputStream

write
public void write(byte[] b,
 int off,
 int len)
 throws IOException

Writes len bytes from the specified byte array starting at offset off to the underlying output
stream. If no exception is thrown, the counter written is incremented by len.

188 CLDC Library API (beta 2)

CLDC Library API (beta 2)

Specified by:
write in interface DataOutput

Parameters:
b - the data.
off - the start offset in the data.
len - the number of bytes to write.

Throws:
IOException - if an I/O error occurs.

Overrides:
write in class OutputStream

flush
public void flush()
 throws IOException

Flushes this data output stream. This forces any buffered output bytes to be written out to the
stream.

The flush method of DataOutputStream calls the flush method of its underlying output
stream.
Throws:

IOException - if an I/O error occurs.
Overrides:

flush in class OutputStream

close
public void close()
 throws IOException

Closes this output stream and releases any system resources associated with the stream.

The close method calls its flush method, and then calls the close method of its underlying
output stream.
Throws:

IOException - if an I/O error occurs.
Overrides:

close in class OutputStream

writeBoolean
public void writeBoolean(boolean v)
 throws IOException

Writes a boolean to the underlying output stream as a 1-byte value. The value true is written
out as the value (byte)1; the value false is written out as the value (byte)0. If no
exception is thrown, the counter written is incremented by 1.
Specified by:

writeBoolean in interface DataOutput

CLDC Library API (beta 2) 189

CLDC Library API (beta 2)

Parameters:
v - a boolean value to be written.

Throws:
IOException - if an I/O error occurs.

writeByte
public void writeByte(int v)
 throws IOException

Writes out a byte to the underlying output stream as a 1-byte value. If no exception is thrown,
the counter written is incremented by 1.
Specified by:

writeByte in interface DataOutput
Parameters:

v - a byte value to be written.
Throws:

IOException - if an I/O error occurs.

writeShort
public void writeShort(int v)
 throws IOException

Writes a short to the underlying output stream as two bytes, high byte first. If no exception is
thrown, the counter written is incremented by 2.
Specified by:

writeShort in interface DataOutput
Parameters:

v - a short to be written.
Throws:

IOException - if an I/O error occurs.

writeChar
public void writeChar(int v)
 throws IOException

Writes a char to the underlying output stream as a 2-byte value, high byte first. If no exception is
thrown, the counter written is incremented by 2.
Specified by:

writeChar in interface DataOutput
Parameters:

v - a char value to be written.
Throws:

IOException - if an I/O error occurs.

190 CLDC Library API (beta 2)

CLDC Library API (beta 2)

writeInt
public void writeInt(int v)
 throws IOException

Writes an int to the underlying output stream as four bytes, high byte first. If no exception is
thrown, the counter written is incremented by 4.
Specified by:

writeInt in interface DataOutput
Parameters:

v - an int to be written.
Throws:

IOException - if an I/O error occurs.

writeLong
public void writeLong(long v)
 throws IOException

Writes a long to the underlying output stream as eight bytes, high byte first. In no exception is
thrown, the counter written is incremented by 8.
Specified by:

writeLong in interface DataOutput
Parameters:

v - a long to be written.
Throws:

IOException - if an I/O error occurs.

writeChars
public void writeChars(String s)
 throws IOException

Writes a string to the underlying output stream as a sequence of characters. Each character is
written to the data output stream as if by the writeChar method. If no exception is thrown, the
counter written is incremented by twice the length of s.
Specified by:

writeChars in interface DataOutput
Parameters:

s - a String value to be written.
Throws:

IOException - if an I/O error occurs.
See Also:

writeChar(int)

CLDC Library API (beta 2) 191

CLDC Library API (beta 2)

writeUTF
public void writeUTF(String str)
 throws IOException

Writes a string to the underlying output stream using UTF-8 encoding in a machine-independent
manner.

First, two bytes are written to the output stream as if by the writeShort method giving the
number of bytes to follow. This value is the number of bytes actually written out, not the length of
the string. Following the length, each character of the string is output, in sequence, using the
UTF-8 encoding for the character. If no exception is thrown, the counter written is
incremented by the total number of bytes written to the output stream. This will be at least two
plus the length of str, and at most two plus thrice the length of str.
Specified by:

writeUTF in interface DataOutput
Parameters:

str - a string to be written.
Throws:

IOException - if an I/O error occurs.

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

192 CLDC Library API (beta 2)

CLDC Library API (beta 2)

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

java.io
Class EOFException
java.lang.Object
 |
 +--java.lang.Throwable
 |
 +--java.lang.Exception
 |
 +--java.io.IOException
 |
 +--java.io.EOFException

public class EOFException
extends IOException

Signals that an end of file or end of stream has been reached unexpectedly during input.

This exception is mainly used by data input streams, which generally expect a binary file in a specific
format, and for which an end of stream is an unusual condition. Most other input streams return a
special value on end of stream.

Note that some input operations react to end-of-file by returning a distinguished value (such as -1)
rather than by throwing an exception.

Since:
JDK1.0

See Also:
DataInputStream, IOException

Constructor Summary
EOFException()
 Constructs an EOFException with null as its error detail message.

EOFException(String s)
 Constructs an EOFException with the specified detail message.

Methods inherited from class java.lang.Throwable

getMessage, printStackTrace, toString

CLDC Library API (beta 2) 193

CLDC Library API (beta 2)

Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, wait, wait, wait

Constructor Detail

EOFException
public EOFException()

Constructs an EOFException with null as its error detail message.

EOFException
public EOFException(String s)

Constructs an EOFException with the specified detail message. The string s may later be
retrieved by the Throwable.getMessage() method of class java.lang.Throwable.
Parameters:

s - the detail message.

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

194 CLDC Library API (beta 2)

CLDC Library API (beta 2)

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

java.io
Class IOException
java.lang.Object
 |
 +--java.lang.Throwable
 |
 +--java.lang.Exception
 |
 +--java.io.IOException

Direct Known Subclasses:
ConnectionNotFoundException, EOFException, InterruptedIOException,
UnsupportedEncodingException, UTFDataFormatException

public class IOException
extends Exception

Signals that an I/O exception of some sort has occurred. This class is the general class of exceptions
produced by failed or interrupted I/O operations.

Since:
JDK1.0

See Also:
InputStream, OutputStream

Constructor Summary
IOException()
 Constructs an IOException with null as its error detail message.

IOException(String s)
 Constructs an IOException with the specified detail message.

Methods inherited from class java.lang.Throwable

getMessage, printStackTrace, toString

Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, wait, wait, wait

CLDC Library API (beta 2) 195

CLDC Library API (beta 2)

Constructor Detail

IOException
public IOException()

Constructs an IOException with null as its error detail message.

IOException
public IOException(String s)

Constructs an IOException with the specified detail message. The error message string s can
later be retrieved by the Throwable.getMessage() method of class
java.lang.Throwable.
Parameters:

s - the detail message.

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

196 CLDC Library API (beta 2)

CLDC Library API (beta 2)

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

java.io
Class InputStream
java.lang.Object
 |
 +--java.io.InputStream

Direct Known Subclasses:
ByteArrayInputStream, DataInputStream

public abstract class InputStream
extends Object

This abstract class is the superclass of all classes representing an input stream of bytes.

Applications that need to define a subclass of InputStream must always provide a method that
returns the next byte of input.

Since:
JDK1.0

See Also:
read(), OutputStream

Constructor Summary
InputStream()

CLDC Library API (beta 2) 197

CLDC Library API (beta 2)

Method Summary
 int available()

 Returns the number of bytes that can be read (or skipped over) from this input
stream without blocking by the next caller of a method for this input stream.

 void close()
 Closes this input stream and releases any system resources associated with the
stream.

 void mark(int readlimit)
 Marks the current position in this input stream.

 boolean markSupported()
 Tests if this input stream supports the mark and reset methods.

abstract
 int

read()
 Reads the next byte of data from the input stream.

 int read(byte[] b)
 Reads some number of bytes from the input stream and stores them into the
buffer array b.

 int read(byte[] b, int off, int len)
 Reads up to len bytes of data from the input stream into an array of bytes.

 void reset()
 Repositions this stream to the position at the time the mark method was last
called on this input stream.

 long skip(long n)
 Skips over and discards n bytes of data from this input stream.

Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, toString, wait, wait,
wait

Constructor Detail

InputStream
public InputStream()

Method Detail

198 CLDC Library API (beta 2)

CLDC Library API (beta 2)

read
public abstract int read()
 throws IOException

Reads the next byte of data from the input stream. The value byte is returned as an int in the
range 0 to 255. If no byte is available because the end of the stream has been reached, the value
-1 is returned. This method blocks until input data is available, the end of the stream is detected,
or an exception is thrown.

A subclass must provide an implementation of this method.
Returns:

the next byte of data, or -1 if the end of the stream is reached.
Throws:

IOException - if an I/O error occurs.

read
public int read(byte[] b)
 throws IOException

Reads some number of bytes from the input stream and stores them into the buffer array b. The
number of bytes actually read is returned as an integer. This method blocks until input data is
available, end of file is detected, or an exception is thrown.

If b is null, a NullPointerException is thrown. If the length of b is zero, then no bytes
are read and 0 is returned; otherwise, there is an attempt to read at least one byte. If no byte is
available because the stream is at end of file, the value -1 is returned; otherwise, at least one byte
is read and stored into b.

The first byte read is stored into element b[0], the next one into b[1], and so on. The number
of bytes read is, at most, equal to the length of b. Let k be the number of bytes actually read; these
bytes will be stored in elements b[0] through b[k-1], leaving elements b[k] through
b[b.length-1] unaffected.

If the first byte cannot be read for any reason other than end of file, then an IOException is
thrown. In particular, an IOException is thrown if the input stream has been closed.

The read(b) method for class InputStream has the same effect as:

 read(b, 0, b.length)

Parameters:
b - the buffer into which the data is read.

Returns:
the total number of bytes read into the buffer, or -1 is there is no more data because the end
of the stream has been reached.

Throws:
IOException - if an I/O error occurs.

See Also:
read(byte[], int, int)

CLDC Library API (beta 2) 199

CLDC Library API (beta 2)

read
public int read(byte[] b,
 int off,
 int len)
 throws IOException

Reads up to len bytes of data from the input stream into an array of bytes. An attempt is made to
read as many as len bytes, but a smaller number may be read, possibly zero. The number of
bytes actually read is returned as an integer.

This method blocks until input data is available, end of file is detected, or an exception is thrown.

If b is null, a NullPointerException is thrown.

If off is negative, or len is negative, or off+len is greater than the length of the array b, then
an IndexOutOfBoundsException is thrown.

If len is zero, then no bytes are read and 0 is returned; otherwise, there is an attempt to read at
least one byte. If no byte is available because the stream is at end of file, the value -1 is returned;
otherwise, at least one byte is read and stored into b.

The first byte read is stored into element b[off], the next one into b[off+1], and so on. The
number of bytes read is, at most, equal to len. Let k be the number of bytes actually read; these
bytes will be stored in elements b[off] through b[off+k-1], leaving elements b[off+k]
through b[off+len-1] unaffected.

In every case, elements b[0] through b[off] and elements b[off+len] through
b[b.length-1] are unaffected.

If the first byte cannot be read for any reason other than end of file, then an IOException is
thrown. In particular, an IOException is thrown if the input stream has been closed.

The read(b, off, len) method for class InputStream simply calls the method read()
repeatedly. If the first such call results in an IOException, that exception is returned from the
call to the read(b, off, len) method. If any subsequent call to read() results in a
IOException, the exception is caught and treated as if it were end of file; the bytes read up to
that point are stored into b and the number of bytes read before the exception occurred is
returned. Subclasses are encouraged to provide a more efficient implementation of this method.
Parameters:

b - the buffer into which the data is read.
off - the start offset in array b at which the data is written.
len - the maximum number of bytes to read.

Returns:
the total number of bytes read into the buffer, or -1 if there is no more data because the end
of the stream has been reached.

Throws:
IOException - if an I/O error occurs.

See Also:
read()

200 CLDC Library API (beta 2)

CLDC Library API (beta 2)

skip
public long skip(long n)
 throws IOException

Skips over and discards n bytes of data from this input stream. The skip method may, for a
variety of reasons, end up skipping over some smaller number of bytes, possibly 0. This may
result from any of a number of conditions; reaching end of file before n bytes have been skipped
is only one possibility. The actual number of bytes skipped is returned. If n is negative, no bytes
are skipped.

The skip method of InputStream creates a byte array and then repeatedly reads into it until n
bytes have been read or the end of the stream has been reached. Subclasses are encouraged to
provide a more efficient implementation of this method.
Parameters:

n - the number of bytes to be skipped.
Returns:

the actual number of bytes skipped.
Throws:

IOException - if an I/O error occurs.

available
public int available()
 throws IOException

Returns the number of bytes that can be read (or skipped over) from this input stream without
blocking by the next caller of a method for this input stream. The next caller might be the same
thread or or another thread.

The available method for class InputStream always returns 0.

This method should be overridden by subclasses.
Returns:

the number of bytes that can be read from this input stream without blocking.
Throws:

IOException - if an I/O error occurs.

close
public void close()
 throws IOException

Closes this input stream and releases any system resources associated with the stream.

The close method of InputStream does nothing.
Throws:

IOException - if an I/O error occurs.

CLDC Library API (beta 2) 201

CLDC Library API (beta 2)

mark
public void mark(int readlimit)

Marks the current position in this input stream. A subsequent call to the reset method
repositions this stream at the last marked position so that subsequent reads re-read the same bytes.

The readlimit arguments tells this input stream to allow that many bytes to be read before the
mark position gets invalidated.

The general contract of mark is that, if the method markSupported returns true, the stream
somehow remembers all the bytes read after the call to mark and stands ready to supply those
same bytes again if and whenever the method reset is called. However, the stream is not
required to remember any data at all if more than readlimit bytes are read from the stream
before reset is called.

The mark method of InputStream does nothing.
Parameters:

readlimit - the maximum limit of bytes that can be read before the mark position
becomes invalid.

See Also:
reset()

reset
public void reset()
 throws IOException

Repositions this stream to the position at the time the mark method was last called on this input
stream.

The general contract of reset is:

If the method markSupported returns true, then:
If the method mark has not been called since the stream was created, or the number of
bytes read from the stream since mark was last called is larger than the argument to
mark at that last call, then an IOException might be thrown.
If such an IOException is not thrown, then the stream is reset to a state such that all
the bytes read since the most recent call to mark (or since the start of the file, if mark
has not been called) will be resupplied to subsequent callers of the read method,
followed by any bytes that otherwise would have been the next input data as of the time
of the call to reset.

If the method markSupported returns false, then:
The call to reset may throw an IOException.
If an IOException is not thrown, then the stream is reset to a fixed state that depends
on the particular type of the input stream and how it was created. The bytes that will be
supplied to subsequent callers of the read method depend on the particular type of the
input stream.

202 CLDC Library API (beta 2)

CLDC Library API (beta 2)

The method reset for class InputStream does nothing and always throws an
IOException.
Throws:

IOException - if this stream has not been marked or if the mark has been invalidated.
See Also:

mark(int), IOException

markSupported
public boolean markSupported()

Tests if this input stream supports the mark and reset methods. The markSupported
method of InputStream returns false.
Returns:

true if this true type supports the mark and reset method; false otherwise.
See Also:

mark(int), reset()

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

CLDC Library API (beta 2) 203

CLDC Library API (beta 2)

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

java.io
Class InputStreamReader
java.lang.Object
 |
 +--java.io.Reader
 |
 +--java.io.InputStreamReader

public class InputStreamReader
extends Reader

An InputStreamReader is a bridge from byte streams to character streams: It reads bytes and translates
them into characters according to a specified character encoding. The encoding that it uses may be
specified by name, or the platform’s default encoding may be accepted.

Each invocation of one of an InputStreamReader’s read() methods may cause one or more bytes to be
read from the underlying byte-input stream. To enable the efficient conversion of bytes to characters,
more bytes may be read ahead from the underlying stream than are necessary to satisfy the current read
operation.

For top efficiency, consider wrapping an InputStreamReader within a BufferedReader. For example:

 BufferedReader in
 = new BufferedReader(new InputStreamReader(System.in));

Field Summary
protected Reader in

 The underlying character-input stream.

Fields inherited from class java.io.Reader

lock

Constructor Summary
InputStreamReader(InputStream is)
 Create an InputStreamReader that uses the default character encoding.

InputStreamReader(InputStream is, String enc)
 Create an InputStreamReader that uses the named character encoding.

204 CLDC Library API (beta 2)

CLDC Library API (beta 2)

Method Summary
 void close()

 Close the stream.

 void mark(int readAheadLimit)
 Mark the present position in the stream.

 boolean markSupported()
 Tell whether this stream supports the mark() operation.

 int read()
 Read a single character.

 int read(char[] cbuf, int off, int len)
 Read characters into a portion of an array.

 boolean ready()
 Tell whether this stream is ready to be read.

 void reset()
 Reset the stream.

 long skip(long n)
 Skip characters.

Methods inherited from class java.io.Reader

read

Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, toString, wait, wait,
wait

Field Detail

in
protected Reader in

The underlying character-input stream.

Constructor Detail

CLDC Library API (beta 2) 205

CLDC Library API (beta 2)

InputStreamReader
public InputStreamReader(InputStream is)

Create an InputStreamReader that uses the default character encoding.
Parameters:

in - An InputStream

InputStreamReader
public InputStreamReader(InputStream is,
 String enc)
 throws UnsupportedEncodingException

Create an InputStreamReader that uses the named character encoding.
Parameters:

in - An InputStream
enc - The name of a supported

Throws:
UnsupportedEncodingException - If the named encoding is not supported

Method Detail

read
public int read()
 throws IOException

Read a single character.
Throws:

IOException - If an I/O error occurs
Overrides:

read in class Reader

read
public int read(char[] cbuf,
 int off,
 int len)
 throws IOException

Read characters into a portion of an array.
Throws:

IOException - If an I/O error occurs
Overrides:

read in class Reader

206 CLDC Library API (beta 2)

CLDC Library API (beta 2)

skip
public long skip(long n)
 throws IOException

Skip characters.
Throws:

IOException - If an I/O error occurs
Overrides:

skip in class Reader

ready
public boolean ready()
 throws IOException

Tell whether this stream is ready to be read.
Throws:

IOException - If an I/O error occurs
Overrides:

ready in class Reader

markSupported
public boolean markSupported()

Tell whether this stream supports the mark() operation.
Overrides:

markSupported in class Reader

mark
public void mark(int readAheadLimit)
 throws IOException

Mark the present position in the stream.
Throws:

IOException - If an I/O error occurs
Overrides:

mark in class Reader

reset
public void reset()
 throws IOException

Reset the stream.
Throws:

IOException - If an I/O error occurs

CLDC Library API (beta 2) 207

CLDC Library API (beta 2)

Overrides:
reset in class Reader

close
public void close()
 throws IOException

Close the stream.
Throws:

IOException - If an I/O error occurs
Overrides:

close in class Reader

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

208 CLDC Library API (beta 2)

CLDC Library API (beta 2)

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

java.io
Class InterruptedIOException
java.lang.Object
 |
 +--java.lang.Throwable
 |
 +--java.lang.Exception
 |
 +--java.io.IOException
 |
 +--java.io.InterruptedIOException

public class InterruptedIOException
extends IOException

Signals that an I/O operation has been interrupted. An InterruptedIOException is thrown to
indicate that an input or output transfer has been terminated because the thread performing it was
terminated. The field bytesTransferred indicates how many bytes were successfully transferred
before the interruption occurred.

Since:
JDK1.0

See Also:
InputStream, OutputStream

Field Summary
 int bytesTransferred

 Reports how many bytes had been transferred as part of the I/O operation before it was
interrupted.

Constructor Summary
InterruptedIOException()
 Constructs an InterruptedIOException with null as its error detail message.

InterruptedIOException(String s)
 Constructs an InterruptedIOException with the specified detail message.

CLDC Library API (beta 2) 209

CLDC Library API (beta 2)

Methods inherited from class java.lang.Throwable

getMessage, printStackTrace, toString

Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, wait, wait, wait

Field Detail

bytesTransferred
public int bytesTransferred

Reports how many bytes had been transferred as part of the I/O operation before it was
interrupted.

Constructor Detail

InterruptedIOException
public InterruptedIOException()

Constructs an InterruptedIOException with null as its error detail message.

InterruptedIOException
public InterruptedIOException(String s)

Constructs an InterruptedIOException with the specified detail message. The string s
can be retrieved later by the Throwable.getMessage() method of class
java.lang.Throwable.
Parameters:

s - the detail message.

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

210 CLDC Library API (beta 2)

CLDC Library API (beta 2)

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

java.io
Class OutputStream
java.lang.Object
 |
 +--java.io.OutputStream

Direct Known Subclasses:
ByteArrayOutputStream, DataOutputStream, PrintStream

public abstract class OutputStream
extends Object

This abstract class is the superclass of all classes representing an output stream of bytes. An output
stream accepts output bytes and sends them to some sink.

Applications that need to define a subclass of OutputStream must always provide at least a method
that writes one byte of output.

Since:
JDK1.0

See Also:
InputStream, write(int)

Constructor Summary
OutputStream()

CLDC Library API (beta 2) 211

CLDC Library API (beta 2)

Method Summary
 void close()

 Closes this output stream and releases any system resources associated with
this stream.

 void flush()
 Flushes this output stream and forces any buffered output bytes to be written
out.

 void write(byte[] b)
 Writes b.length bytes from the specified byte array to this output stream.

 void write(byte[] b, int off, int len)
 Writes len bytes from the specified byte array starting at offset off to this
output stream.

abstract
 void

write(int b)
 Writes the specified byte to this output stream.

Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, toString, wait, wait,
wait

Constructor Detail

OutputStream
public OutputStream()

Method Detail

write
public abstract void write(int b)
 throws IOException

Writes the specified byte to this output stream. The general contract for write is that one byte is
written to the output stream. The byte to be written is the eight low-order bits of the argument b.
The 24 high-order bits of b are ignored.

Subclasses of OutputStream must provide an implementation for this method.
Parameters:

b - the byte.
Throws:

IOException - if an I/O error occurs. In particular, an IOException may be thrown if the
output stream has been closed.

212 CLDC Library API (beta 2)

CLDC Library API (beta 2)

write
public void write(byte[] b)
 throws IOException

Writes b.length bytes from the specified byte array to this output stream. The general contract
for write(b) is that it should have exactly the same effect as the call write(b, 0,
b.length).
Parameters:

b - the data.
Throws:

IOException - if an I/O error occurs.
See Also:

write(byte[], int, int)

write
public void write(byte[] b,
 int off,
 int len)
 throws IOException

Writes len bytes from the specified byte array starting at offset off to this output stream. The
general contract for write(b, off, len) is that some of the bytes in the array b are written
to the output stream in order; element b[off] is the first byte written and b[off+len-1] is
the last byte written by this operation.

The write method of OutputStream calls the write method of one argument on each of the
bytes to be written out. Subclasses are encouraged to override this method and provide a more
efficient implementation.

If b is null, a NullPointerException is thrown.

If off is negative, or len is negative, or off+len is greater than the length of the array b, then
an IndexOutOfBoundsException is thrown.
Parameters:

b - the data.
off - the start offset in the data.
len - the number of bytes to write.

Throws:
IOException - if an I/O error occurs. In particular, an IOException is thrown if the output
stream is closed.

flush
public void flush()
 throws IOException

Flushes this output stream and forces any buffered output bytes to be written out. The general
contract of flush is that calling it is an indication that, if any bytes previously written have been
buffered by the implementation of the output stream, such bytes should immediately be written to

CLDC Library API (beta 2) 213

CLDC Library API (beta 2)

their intended destination.

The flush method of OutputStream does nothing.
Throws:

IOException - if an I/O error occurs.

close
public void close()
 throws IOException

Closes this output stream and releases any system resources associated with this stream. The
general contract of close is that it closes the output stream. A closed stream cannot perform
output operations and cannot be reopened.

The close method of OutputStream does nothing.
Throws:

IOException - if an I/O error occurs.

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

214 CLDC Library API (beta 2)

CLDC Library API (beta 2)

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

java.io
Class OutputStreamWriter
java.lang.Object
 |
 +--java.io.Writer
 |
 +--java.io.OutputStreamWriter

public class OutputStreamWriter
extends Writer

An OutputStreamWriter is a bridge from character streams to byte streams: Characters written to it are
translated into bytes according to a specified character encoding. The encoding that it uses may be
specified by name, or the platform’s default encoding may be accepted.

Each invocation of a write() method causes the encoding converter to be invoked on the given
character(s). The resulting bytes are accumulated in a buffer before being written to the underlying
output stream. The size of this buffer may be specified, but by default it is large enough for most
purposes. Note that the characters passed to the write() methods are not buffered.

For top efficiency, consider wrapping an OutputStreamWriter within a BufferedWriter so as to avoid
frequent converter invocations. For example:

 Writer out
 = new BufferedWriter(new OutputStreamWriter(System.out));

Field Summary
protected Writer out

 The underlying character-output stream.

Fields inherited from class java.io.Writer

lock

CLDC Library API (beta 2) 215

CLDC Library API (beta 2)

Constructor Summary
OutputStreamWriter(OutputStream os)
 Create an OutputStreamWriter that uses the default character encoding.

OutputStreamWriter(OutputStream os, String enc)
 Create an OutputStreamWriter that uses the named character encoding.

Method Summary
 void close()

 Close the stream.

 void flush()
 Flush the stream.

 void write(char[] cbuf, int off, int len)
 Write a portion of an array of characters.

 void write(int c)
 Write a single character.

 void write(String str, int off, int len)
 Write a portion of a string.

Methods inherited from class java.io.Writer

write, write

Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, toString, wait, wait,
wait

Field Detail

out
protected Writer out

The underlying character-output stream.

216 CLDC Library API (beta 2)

CLDC Library API (beta 2)

Constructor Detail

OutputStreamWriter
public OutputStreamWriter(OutputStream os)

Create an OutputStreamWriter that uses the default character encoding.
Parameters:

out - An OutputStream

OutputStreamWriter
public OutputStreamWriter(OutputStream os,
 String enc)
 throws UnsupportedEncodingException

Create an OutputStreamWriter that uses the named character encoding.
Parameters:

out - An OutputStream
enc - The name of a supported

Throws:
UnsupportedEncodingException - If the named encoding is not supported

Method Detail

write
public void write(int c)
 throws IOException

Write a single character.
Throws:

IOException - If an I/O error occurs
Overrides:

write in class Writer

write
public void write(char[] cbuf,
 int off,
 int len)
 throws IOException

Write a portion of an array of characters.
Parameters:

cbuf - Buffer of characters to be written
off - Offset from which to start reading characters
len - Number of characters to be written

CLDC Library API (beta 2) 217

CLDC Library API (beta 2)

Throws:
IOException - If an I/O error occurs

Overrides:
write in class Writer

write
public void write(String str,
 int off,
 int len)
 throws IOException

Write a portion of a string.
Parameters:

str - String to be written
off - Offset from which to start reading characters
len - Number of characters to be written

Throws:
IOException - If an I/O error occurs

Overrides:
write in class Writer

flush
public void flush()
 throws IOException

Flush the stream.
Throws:

IOException - If an I/O error occurs
Overrides:

flush in class Writer

close
public void close()
 throws IOException

Close the stream.
Throws:

IOException - If an I/O error occurs
Overrides:

close in class Writer

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

218 CLDC Library API (beta 2)

CLDC Library API (beta 2)

CLDC Library API (beta 2) 219

CLDC Library API (beta 2)

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

java.io
Class PrintStream
java.lang.Object
 |
 +--java.io.OutputStream
 |
 +--java.io.PrintStream

public class PrintStream
extends OutputStream

A PrintStream adds functionality to another output stream, namely the ability to print
representations of various data values conveniently. Two other features are provided as well. Unlike
other output streams, a PrintStream never throws an IOException; instead, exceptional
situations merely set an internal flag that can be tested via the checkError method. Optionally, a
PrintStream can be created so as to flush automatically; this means that the flush method is
automatically invoked after a byte array is written, one of the println methods is invoked, or a
newline character or byte (’\n’) is written.

All characters printed by a PrintStream are converted into bytes using the platform’s default
character encoding.

Since:
JDK1.0

Constructor Summary
PrintStream(OutputStream out)
 Create a new print stream.

Method Summary
 boolean checkError()

 Flush the stream and check its error state.

 void close()
 Close the stream.

 void flush()
 Flush the stream.

 void print(boolean b)
 Print a boolean value.

220 CLDC Library API (beta 2)

CLDC Library API (beta 2)

 void print(char c)
 Print a character.

 void print(char[] s)
 Print an array of characters.

 void print(int i)
 Print an integer.

 void print(long l)
 Print a long integer.

 void print(Object obj)
 Print an object.

 void print(String s)
 Print a string.

 void println()
 Terminate the current line by writing the line separator string.

 void println(boolean x)
 Print a boolean and then terminate the line.

 void println(char x)
 Print a character and then terminate the line.

 void println(char[] x)
 Print an array of characters and then terminate the line.

 void println(int x)
 Print an integer and then terminate the line.

 void println(long x)
 Print a long and then terminate the line.

 void println(Object x)
 Print an Object and then terminate the line.

 void println(String x)
 Print a String and then terminate the line.

protected
 void

setError()
 Set the error state of the stream to true.

 void write(byte[] buf, int off, int len)
 Write len bytes from the specified byte array starting at offset off to this
stream.

 void write(int b)
 Write the specified byte to this stream.

Methods inherited from class java.io.OutputStream

write

CLDC Library API (beta 2) 221

CLDC Library API (beta 2)

Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, toString, wait, wait,
wait

Constructor Detail

PrintStream
public PrintStream(OutputStream out)

Create a new print stream. This stream will not flush automatically.
Parameters:

out - The output stream to which values and objects will be printed

Method Detail

flush
public void flush()

Flush the stream. This is done by writing any buffered output bytes to the underlying output
stream and then flushing that stream.
Overrides:

flush in class OutputStream
See Also:

OutputStream.flush()

close
public void close()

Close the stream. This is done by flushing the stream and then closing the underlying output
stream.
Overrides:

close in class OutputStream
See Also:

OutputStream.close()

checkError
public boolean checkError()

222 CLDC Library API (beta 2)

CLDC Library API (beta 2)

Flush the stream and check its error state. The internal error state is set to true when the
underlying output stream throws an IOException, and when the setError method is
invoked.
Returns:

True if and only if this stream has encountered an IOException, or the setError
method has been invoked

setError
protected void setError()

Set the error state of the stream to true.
Since:

JDK1.1

write
public void write(int b)

Write the specified byte to this stream. If the byte is a newline and automatic flushing is enabled
then the flush method will be invoked.

Note that the byte is written as given; to write a character that will be translated according to the
platform’s default character encoding, use the print(char) or println(char) methods.
Parameters:

b - The byte to be written
Overrides:

write in class OutputStream
See Also:

print(char), println(char)

write
public void write(byte[] buf,
 int off,
 int len)

Write len bytes from the specified byte array starting at offset off to this stream. If automatic
flushing is enabled then the flush method will be invoked.

Note that the bytes will be written as given; to write characters that will be translated according to
the platform’s default character encoding, use the print(char) or println(char)
methods.
Parameters:

buf - A byte array
off - Offset from which to start taking bytes
len - Number of bytes to write

Overrides:
write in class OutputStream

CLDC Library API (beta 2) 223

CLDC Library API (beta 2)

print
public void print(boolean b)

Print a boolean value. The string produced by String.valueOf(boolean) is translated into
bytes according to the platform’s default character encoding, and these bytes are written in
exactly the manner of the write(int) method.
Parameters:

b - The boolean to be printed

print
public void print(char c)

Print a character. The character is translated into one or more bytes according to the platform’s
default character encoding, and these bytes are written in exactly the manner of the
write(int) method.
Parameters:

c - The char to be printed

print
public void print(int i)

Print an integer. The string produced by String.valueOf(int) is translated into bytes
according to the platform’s default character encoding, and these bytes are written in exactly the
manner of the write(int) method.
Parameters:

i - The int to be printed
See Also:

Integer.toString(int)

print
public void print(long l)

Print a long integer. The string produced by String.valueOf(long) is translated into bytes
according to the platform’s default character encoding, and these bytes are written in exactly the
manner of the write(int) method.
Parameters:

l - The long to be printed
See Also:

Long.toString(long)

224 CLDC Library API (beta 2)

CLDC Library API (beta 2)

print
public void print(char[] s)

Print an array of characters. The characters are converted into bytes according to the platform’s
default character encoding, and these bytes are written in exactly the manner of the
write(int) method.
Parameters:

s - The array of chars to be printed
Throws:

NullPointerException - If s is null

print
public void print(String s)

Print a string. If the argument is null then the string "null" is printed. Otherwise, the string’s
characters are converted into bytes according to the platform’s default character encoding, and
these bytes are written in exactly the manner of the write(int) method.
Parameters:

s - The String to be printed

print
public void print(Object obj)

Print an object. The string produced by the String.valueOf(Object) method is translated
into bytes according to the platform’s default character encoding, and these bytes are written in
exactly the manner of the write(int) method.
Parameters:

obj - The Object to be printed
See Also:

Object.toString()

println
public void println()

Terminate the current line by writing the line separator string. The line separator string is defined
by the system property line.separator, and is not necessarily a single newline character
(’\n’).

println
public void println(boolean x)

Print a boolean and then terminate the line. This method behaves as though it invokes
print(boolean) and then println().

CLDC Library API (beta 2) 225

CLDC Library API (beta 2)

Parameters:
x - The boolean to be printed

println
public void println(char x)

Print a character and then terminate the line. This method behaves as though it invokes
print(char) and then println().
Parameters:

x - The char to be printed.

println
public void println(int x)

Print an integer and then terminate the line. This method behaves as though it invokes
print(int) and then println().
Parameters:

x - The int to be printed.

println
public void println(long x)

Print a long and then terminate the line. This method behaves as though it invokes
print(long) and then println().
Parameters:

x - a The long to be printed.

println
public void println(char[] x)

Print an array of characters and then terminate the line. This method behaves as though it invokes
print(char[]) and then println().
Parameters:

x - an array of chars to print.

println
public void println(String x)

Print a String and then terminate the line. This method behaves as though it invokes
print(String) and then println().
Parameters:

x - The String to be printed.

226 CLDC Library API (beta 2)

CLDC Library API (beta 2)

println
public void println(Object x)

Print an Object and then terminate the line. This method behaves as though it invokes
print(Object) and then println().
Parameters:

x - The Object to be printed.

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

CLDC Library API (beta 2) 227

CLDC Library API (beta 2)

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

java.io
Class Reader
java.lang.Object
 |
 +--java.io.Reader

Direct Known Subclasses:
InputStreamReader

public abstract class Reader
extends Object

Abstract class for reading character streams. The only methods that a subclass must implement are
read(char[], int, int) and close(). Most subclasses, however, will override some of the methods defined
here in order to provide higher efficiency, additional functionality, or both.

Since:
JDK1.1

See Also:
InputStreamReader, Writer

Field Summary
protected Object lock

 The object used to synchronize operations on this stream.

Constructor Summary
protected Reader()

 Create a new character-stream reader whose critical sections will synchronize on
the reader itself.

protected Reader(Object lock)
 Create a new character-stream reader whose critical sections will synchronize on
the given object.

228 CLDC Library API (beta 2)

CLDC Library API (beta 2)

Method Summary
abstract void close()

 Close the stream.

 void mark(int readAheadLimit)
 Mark the present position in the stream.

 boolean markSupported()
 Tell whether this stream supports the mark() operation.

 int read()
 Read a single character.

 int read(char[] cbuf)
 Read characters into an array.

abstract int read(char[] cbuf, int off, int len)
 Read characters into a portion of an array.

 boolean ready()
 Tell whether this stream is ready to be read.

 void reset()
 Reset the stream.

 long skip(long n)
 Skip characters.

Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, toString, wait, wait,
wait

Field Detail

lock
protected Object lock

The object used to synchronize operations on this stream. For efficiency, a character-stream
object may use an object other than itself to protect critical sections. A subclass should therefore
use the object in this field rather than this or a synchronized method.

Constructor Detail

CLDC Library API (beta 2) 229

CLDC Library API (beta 2)

Reader
protected Reader()

Create a new character-stream reader whose critical sections will synchronize on the reader itself.

Reader
protected Reader(Object lock)

Create a new character-stream reader whose critical sections will synchronize on the given object.
Parameters:

lock - The Object to synchronize on.

Method Detail

read
public int read()
 throws IOException

Read a single character. This method will block until a character is available, an I/O error occurs,
or the end of the stream is reached.

Subclasses that intend to support efficient single-character input should override this method.
Returns:

The character read, as an integer in the range 0 to 65535 (0x00-0xffff), or -1 if the end
of the stream has been reached

Throws:
IOException - If an I/O error occurs

read
public int read(char[] cbuf)
 throws IOException

Read characters into an array. This method will block until some input is available, an I/O error
occurs, or the end of the stream is reached.
Parameters:

cbuf - Destination buffer
Returns:

The number of bytes read, or -1 if the end of the stream has been reached
Throws:

IOException - If an I/O error occurs

230 CLDC Library API (beta 2)

CLDC Library API (beta 2)

read
public abstract int read(char[] cbuf,
 int off,
 int len)
 throws IOException

Read characters into a portion of an array. This method will block until some input is available, an
I/O error occurs, or the end of the stream is reached.
Parameters:

cbuf - Destination buffer
off - Offset at which to start storing characters
len - Maximum number of characters to read

Returns:
The number of characters read, or -1 if the end of the stream has been reached

Throws:
IOException - If an I/O error occurs

skip
public long skip(long n)
 throws IOException

Skip characters. This method will block until some characters are available, an I/O error occurs,
or the end of the stream is reached.
Parameters:

n - The number of characters to skip
Returns:

The number of characters actually skipped
Throws:

IllegalArgumentException - If n is negative.
IOException - If an I/O error occurs

ready
public boolean ready()
 throws IOException

Tell whether this stream is ready to be read.
Returns:

True if the next read() is guaranteed not to block for input, false otherwise. Note that
returning false does not guarantee that the next read will block.

Throws:
IOException - If an I/O error occurs

markSupported
public boolean markSupported()

CLDC Library API (beta 2) 231

CLDC Library API (beta 2)

Tell whether this stream supports the mark() operation. The default implementation always
returns false. Subclasses should override this method.
Returns:

true if and only if this stream supports the mark operation.

mark
public void mark(int readAheadLimit)
 throws IOException

Mark the present position in the stream. Subsequent calls to reset() will attempt to reposition the
stream to this point. Not all character-input streams support the mark() operation.
Parameters:

readAheadLimit - Limit on the number of characters that may be read while still
preserving the mark. After reading this many characters, attempting to reset the stream may
fail.

Throws:
IOException - If the stream does not support mark(), or if some other I/O error occurs

reset
public void reset()
 throws IOException

Reset the stream. If the stream has been marked, then attempt to reposition it at the mark. If the
stream has not been marked, then attempt to reset it in some way appropriate to the particular
stream, for example by repositioning it to its starting point. Not all character-input streams
support the reset() operation, and some support reset() without supporting mark().
Throws:

IOException - If the stream has not been marked, or if the mark has been invalidated, or if
the stream does not support reset(), or if some other I/O error occurs

close
public abstract void close()
 throws IOException

Close the stream. Once a stream has been closed, further read(), ready(), mark(), or reset()
invocations will throw an IOException. Closing a previously-closed stream, however, has no
effect.
Throws:

IOException - If an I/O error occurs

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

232 CLDC Library API (beta 2)

CLDC Library API (beta 2)

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

java.io
Class UTFDataFormatException
java.lang.Object
 |
 +--java.lang.Throwable
 |
 +--java.lang.Exception
 |
 +--java.io.IOException
 |
 +--java.io.UTFDataFormatException

public class UTFDataFormatException
extends IOException

Signals that a malformed UTF-8 string has been read in a data input stream or by any class that
implements the data input interface. See the writeUTF method for the format in which UTF-8 strings
are read and written.

Since:
JDK1.0

See Also:
DataInput, DataInputStream.readUTF(java.io.DataInput), IOException

Constructor Summary
UTFDataFormatException()
 Constructs a UTFDataFormatException with null as its error detail message.

UTFDataFormatException(String s)
 Constructs a UTFDataFormatException with the specified detail message.

Methods inherited from class java.lang.Throwable

getMessage, printStackTrace, toString

Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, wait, wait, wait

CLDC Library API (beta 2) 233

CLDC Library API (beta 2)

Constructor Detail

UTFDataFormatException
public UTFDataFormatException()

Constructs a UTFDataFormatException with null as its error detail message.

UTFDataFormatException
public UTFDataFormatException(String s)

Constructs a UTFDataFormatException with the specified detail message. The string s can
be retrieved later by the Throwable.getMessage() method of class
java.lang.Throwable.
Parameters:

s - the detail message.

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

234 CLDC Library API (beta 2)

CLDC Library API (beta 2)

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

java.io
Class UnsupportedEncodingException
java.lang.Object
 |
 +--java.lang.Throwable
 |
 +--java.lang.Exception
 |
 +--java.io.IOException
 |
 +--java.io.UnsupportedEncodingException

public class UnsupportedEncodingException
extends IOException

The Character Encoding is not supported.

Since:
JDK1.1

Constructor Summary
UnsupportedEncodingException()
 Constructs an UnsupportedEncodingException without a detail message.

UnsupportedEncodingException(String s)
 Constructs an UnsupportedEncodingException with a detail message.

Methods inherited from class java.lang.Throwable

getMessage, printStackTrace, toString

Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, wait, wait, wait

Constructor Detail

CLDC Library API (beta 2) 235

CLDC Library API (beta 2)

UnsupportedEncodingException
public UnsupportedEncodingException()

Constructs an UnsupportedEncodingException without a detail message.

UnsupportedEncodingException
public UnsupportedEncodingException(String s)

Constructs an UnsupportedEncodingException with a detail message.
Parameters:

s - Describes the reason for the exception.

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

236 CLDC Library API (beta 2)

CLDC Library API (beta 2)

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

java.io
Class Writer
java.lang.Object
 |
 +--java.io.Writer

Direct Known Subclasses:
OutputStreamWriter

public abstract class Writer
extends Object

Abstract class for writing to character streams. The only methods that a subclass must implement are
write(char[], int, int), flush(), and close(). Most subclasses, however, will override some of the
methods defined here in order to provide higher efficiency, additional functionality, or both.

Since:
JDK1.1

See Also:
Writer, OutputStreamWriter, Reader

Field Summary
protected Object lock

 The object used to synchronize operations on this stream.

Constructor Summary
protected Writer()

 Create a new character-stream writer whose critical sections will synchronize on
the writer itself.

protected Writer(Object lock)
 Create a new character-stream writer whose critical sections will synchronize on
the given object.

CLDC Library API (beta 2) 237

CLDC Library API (beta 2)

Method Summary
abstract void close()

 Close the stream, flushing it first.

abstract void flush()
 Flush the stream.

 void write(char[] cbuf)
 Write an array of characters.

abstract void write(char[] cbuf, int off, int len)
 Write a portion of an array of characters.

 void write(int c)
 Write a single character.

 void write(String str)
 Write a string.

 void write(String str, int off, int len)
 Write a portion of a string.

Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, toString, wait, wait,
wait

Field Detail

lock
protected Object lock

The object used to synchronize operations on this stream. For efficiency, a character-stream
object may use an object other than itself to protect critical sections. A subclass should therefore
use the object in this field rather than this or a synchronized method.

Constructor Detail

Writer
protected Writer()

Create a new character-stream writer whose critical sections will synchronize on the writer itself.

238 CLDC Library API (beta 2)

CLDC Library API (beta 2)

Writer
protected Writer(Object lock)

Create a new character-stream writer whose critical sections will synchronize on the given object.
Parameters:

lock - Object to synchronize on.

Method Detail

write
public void write(int c)
 throws IOException

Write a single character. The character to be written is contained in the 16 low-order bits of the
given integer value; the 16 high-order bits are ignored.

Subclasses that intend to support efficient single-character output should override this method.
Parameters:

c - int specifying a character to be written.
Throws:

IOException - If an I/O error occurs

write
public void write(char[] cbuf)
 throws IOException

Write an array of characters.
Parameters:

cbuf - Array of characters to be written
Throws:

IOException - If an I/O error occurs

write
public abstract void write(char[] cbuf,
 int off,
 int len)
 throws IOException

Write a portion of an array of characters.
Parameters:

cbuf - Array of characters
off - Offset from which to start writing characters
len - Number of characters to write

Throws:
IOException - If an I/O error occurs

CLDC Library API (beta 2) 239

CLDC Library API (beta 2)

write
public void write(String str)
 throws IOException

Write a string.
Parameters:

str - String to be written
Throws:

IOException - If an I/O error occurs

write
public void write(String str,
 int off,
 int len)
 throws IOException

Write a portion of a string.
Parameters:

str - A String
off - Offset from which to start writing characters
len - Number of characters to write

Throws:
IOException - If an I/O error occurs

flush
public abstract void flush()
 throws IOException

Flush the stream. If the stream has saved any characters from the various write() methods in a
buffer, write them immediately to their intended destination. Then, if that destination is another
character or byte stream, flush it. Thus one flush() invocation will flush all the buffers in a chain
of Writers and OutputStreams.
Throws:

IOException - If an I/O error occurs

close
public abstract void close()
 throws IOException

Close the stream, flushing it first. Once a stream has been closed, further write() or flush()
invocations will cause an IOException to be thrown. Closing a previously-closed stream,
however, has no effect.
Throws:

IOException - If an I/O error occurs

240 CLDC Library API (beta 2)

CLDC Library API (beta 2)

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

CLDC Library API (beta 2) 241

CLDC Library API (beta 2)

Overview Package Class Tree Deprecated Index Help
 PREV PACKAGE NEXT PACKAGE FRAMES NO FRAMES

Package java.util

Interface Summary

Enumeration
An object that implements the Enumeration interface generates a series of elements,
one at a time.

Class Summary

Calendar
Calendar is an abstract class for getting and setting dates using a set of integer fields
such as YEAR, MONTH, DAY, and so on.

Date The class Date represents a specific instant in time, with millisecond precision.

Hashtable This class implements a hashtable, which maps keys to values.

Random An instance of this class is used to generate a stream of pseudorandom numbers.

Stack The Stack class represents a last-in-first-out (LIFO) stack of objects.

TimeZone TimeZone represents a time zone offset, and also figures out daylight savings.

Vector The Vector class implements a growable array of objects.

Exception Summary

EmptyStackException
Thrown by methods in the Stack class to indicate that the stack is
empty.

NoSuchElementException
Thrown by the nextElement method of an Enumeration to
indicate that there are no more elements in the enumeration.

Overview Package Class Tree Deprecated Index Help
 PREV PACKAGE NEXT PACKAGE FRAMES NO FRAMES

242 CLDC Library API (beta 2)

CLDC Library API (beta 2)

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

java.util
Class Calendar
java.lang.Object
 |
 +--java.util.Calendar

public abstract class Calendar
extends Object

Calendar is an abstract class for getting and setting dates using a set of integer fields such as YEAR,
MONTH, DAY, and so on. (A Date object represents a specific instant in time with millisecond
precision. See Date for information about the Date class.)

Subclasses of Calendar interpret a Date according to the rules of a specific calendar system.

Like other locale-sensitive classes, Calendar provides a class method, getInstance, for getting a
generally useful object of this type.

 Calendar rightNow = Calendar.getInstance();

A Calendar object can produce all the time field values needed to implement the date-time
formatting for a particular language and calendar style (for example, Japanese-Gregorian,
Japanese-Traditional).

When computing a Date from time fields, there may be insufficient information to compute the Date
(such as only year and month but no day in the month).

Insufficient information. The calendar will use default information to specify the missing fields. This
may vary by calendar; for the Gregorian calendar, the default for a field is the same as that of the start
of the epoch: i.e., YEAR = 1970, MONTH = JANUARY, DATE = 1, etc.

Inconsistent information. In the J2SE calendar, it is possible to set fields inconsistently. However, in
this subset, the DAY_OF_WEEK field cannot be set, and only a subset of the other J2SE Calendar
fields are included. So it is not possible to set inconsistent data.

Note: The ambiguity in interpretation of what day midnight belongs to, is resolved as so: 24:00:00
"belongs" to the following day. That is, 23:59 on Dec 31, 1969 < 24:00 on Jan 1, 1970 < 24:01:00 on
Jan 1, 1970

The ambiguity mentioned in the J2SE Calendar class regarding AM and PM does not concern this
Calendar subset, as only 24 hour mode is supported.

This class is a subset for J2ME of the J2SE Calendar class. Many methods and variables have been
pruned, and other methods simplified, in an effort to reduce the size of this class.

CLDC Library API (beta 2) 243

CLDC Library API (beta 2)

See Also:
TimeZone

Field Summary
static int APRIL

 Value of the MONTH field indicating the fourth month of the year.

static int AUGUST
 Value of the MONTH field indicating the eighth month of the year.

static int DATE
 Field number for get and set indicating the day of the month.

static int DAY_OF_MONTH
 Field number for get and set indicating the day of the month.

static int DAY_OF_WEEK
 Field number for get and set indicating the day of the week.

static int DECEMBER
 Value of the MONTH field indicating the twelfth month of the year.

static int FEBRUARY
 Value of the MONTH field indicating the second month of the year.

static int FRIDAY
 Value of the DAY_OF_WEEK field indicating Friday.

static int HOUR_OF_DAY
 Field number for get and set indicating the hour of the day.

static int JANUARY
 Value of the MONTH field indicating the first month of the year.

static int JULY
 Value of the MONTH field indicating the seventh month of the year.

static int JUNE
 Value of the MONTH field indicating the sixth month of the year.

static int MARCH
 Value of the MONTH field indicating the third month of the year.

static int MAY
 Value of the MONTH field indicating the fifth month of the year.

static int MILLISECOND
 Field number for get and set indicating the millisecond within the second.

static int MINUTE
 Field number for get and set indicating the minute within the hour.

static int MONDAY
 Value of the DAY_OF_WEEK field indicating Monday.

static int MONTH
 Field number for get and set indicating the month.

244 CLDC Library API (beta 2)

CLDC Library API (beta 2)

static int NOVEMBER
 Value of the MONTH field indicating the eleventh month of the year.

static int OCTOBER
 Value of the MONTH field indicating the tenth month of the year.

static int SATURDAY
 Value of the DAY_OF_WEEK field indicating Saturday.

static int SECOND
 Field number for get and set indicating the second within the minute.

static int SEPTEMBER
 Value of the MONTH field indicating the ninth month of the year.

static int SUNDAY
 Value of the DAY_OF_WEEK field indicating Sunday.

static int THURSDAY
 Value of the DAY_OF_WEEK field indicating Thursday.

static int TUESDAY
 Value of the DAY_OF_WEEK field indicating Tuesday.

static int WEDNESDAY
 Value of the DAY_OF_WEEK field indicating Wednesday.

static int YEAR
 Field number for get and set indicating the year.

Constructor Summary
protected Calendar()

 Constructs a Calendar with the default time zone and default locale.

CLDC Library API (beta 2) 245

CLDC Library API (beta 2)

Method Summary
 boolean after(Object when)

 Compares the time field records.

 boolean before(Object when)
 Compares the time field records.

 boolean equals(Object obj)
 Compares this calendar to the specified object.

 int get(int field)
 Gets the value for a given time field.

static Calendar getInstance()
 Gets a calendar using the default time zone and default locale.

static Calendar getInstance(TimeZone zone)
 Gets a calendar using the specified time zone and default locale.

 Date getTime()
 Gets this Calendar’s current time.

 long getTimeInMillis()
 Gets this Calendar’s current time as a long expressed in milliseconds after
January 1, 1970, 0:00:00 GMT (the epoch.)

 TimeZone getTimeZone()
 Gets the time zone.

 void set(int field, int value)
 Sets the time field with the given value.

 void setTime(Date date)
 Sets this Calendar’s current time with the given Date.

 void setTimeInMillis(long millis)
 Sets this Calendar’s current time from the given long value.

 void setTimeZone(TimeZone value)
 Sets the time zone with the given time zone value.

Methods inherited from class java.lang.Object

getClass, hashCode, notify, notifyAll, toString, wait, wait, wait

Field Detail

246 CLDC Library API (beta 2)

CLDC Library API (beta 2)

YEAR
public static final int YEAR

Field number for get and set indicating the year. This is a calendar-specific value.

MONTH
public static final int MONTH

Field number for get and set indicating the month. This is a calendar-specific value.

DATE
public static final int DATE

Field number for get and set indicating the day of the month. This is a synonym for
DAY_OF_MONTH.

See Also:
DAY_OF_MONTH

DAY_OF_MONTH
public static final int DAY_OF_MONTH

Field number for get and set indicating the day of the month. This is a synonym for DATE.

See Also:
DATE

DAY_OF_WEEK
public static final int DAY_OF_WEEK

Field number for get and set indicating the day of the week.

HOUR_OF_DAY
public static final int HOUR_OF_DAY

Field number for get and set indicating the hour of the day. HOUR_OF_DAY is used for the
24-hour clock. E.g., at 10:04:15.250 PM the HOUR_OF_DAY is 22.

MINUTE
public static final int MINUTE

Field number for get and set indicating the minute within the hour. E.g., at 10:04:15.250 PM
the MINUTE is 4.

CLDC Library API (beta 2) 247

CLDC Library API (beta 2)

SECOND
public static final int SECOND

Field number for get and set indicating the second within the minute. E.g., at 10:04:15.250 PM
the SECOND is 15.

MILLISECOND
public static final int MILLISECOND

Field number for get and set indicating the millisecond within the second. E.g., at
10:04:15.250 PM the MILLISECOND is 250.

SUNDAY
public static final int SUNDAY

Value of the DAY_OF_WEEK field indicating Sunday.

MONDAY
public static final int MONDAY

Value of the DAY_OF_WEEK field indicating Monday.

TUESDAY
public static final int TUESDAY

Value of the DAY_OF_WEEK field indicating Tuesday.

WEDNESDAY
public static final int WEDNESDAY

Value of the DAY_OF_WEEK field indicating Wednesday.

THURSDAY
public static final int THURSDAY

Value of the DAY_OF_WEEK field indicating Thursday.

248 CLDC Library API (beta 2)

CLDC Library API (beta 2)

FRIDAY
public static final int FRIDAY

Value of the DAY_OF_WEEK field indicating Friday.

SATURDAY
public static final int SATURDAY

Value of the DAY_OF_WEEK field indicating Saturday.

JANUARY
public static final int JANUARY

Value of the MONTH field indicating the first month of the year.

FEBRUARY
public static final int FEBRUARY

Value of the MONTH field indicating the second month of the year.

MARCH
public static final int MARCH

Value of the MONTH field indicating the third month of the year.

APRIL
public static final int APRIL

Value of the MONTH field indicating the fourth month of the year.

MAY
public static final int MAY

Value of the MONTH field indicating the fifth month of the year.

JUNE
public static final int JUNE

Value of the MONTH field indicating the sixth month of the year.

CLDC Library API (beta 2) 249

CLDC Library API (beta 2)

JULY
public static final int JULY

Value of the MONTH field indicating the seventh month of the year.

AUGUST
public static final int AUGUST

Value of the MONTH field indicating the eighth month of the year.

SEPTEMBER
public static final int SEPTEMBER

Value of the MONTH field indicating the ninth month of the year.

OCTOBER
public static final int OCTOBER

Value of the MONTH field indicating the tenth month of the year.

NOVEMBER
public static final int NOVEMBER

Value of the MONTH field indicating the eleventh month of the year.

DECEMBER
public static final int DECEMBER

Value of the MONTH field indicating the twelfth month of the year.

Constructor Detail

Calendar
protected Calendar()

Constructs a Calendar with the default time zone and default locale.

See Also:
TimeZone.getDefault()

Method Detail

250 CLDC Library API (beta 2)

CLDC Library API (beta 2)

getTime
public final Date getTime()

Gets this Calendar’s current time.

Returns:
the current time.

setTime
public final void setTime(Date date)

Sets this Calendar’s current time with the given Date.

Note: Calling setTime() with Date(Long.MAX_VALUE) or Date(Long.MIN_VALUE)
may yield incorrect field values from get().

Parameters:
date - the given Date.

getInstance
public static Calendar getInstance()

Gets a calendar using the default time zone and default locale.

The following is information for implementers. Applications should not need to be aware of this
or rely on it, because each implementation may do it differently:

The Calendar will look up a class the name of which includes the platform name. The class name
will take the form:

{classRoot}.util.{platform}.CalendarImpl

The classRoot is derived from the system by looking up the system property
"microedition.implpath" If this property key is not found or the associated class is not present then
"com.sun.cldc" is used.

The platform name is derived from the system by looking for the system property
"microedition.platform". If this property key is not found or the associated class is not present
then one of two default directories are used. These are called "j2me" and "j2se". If the property
"microedition.configuration" is non-null then "j2me" is used, otherwise "j2se" is assumed.

Returns:
a Calendar.

CLDC Library API (beta 2) 251

CLDC Library API (beta 2)

getInstance
public static Calendar getInstance(TimeZone zone)

Gets a calendar using the specified time zone and default locale.

Parameters:
zone - the time zone to use

Returns:
a Calendar.

getTimeInMillis
public long getTimeInMillis()

Gets this Calendar’s current time as a long expressed in milliseconds after January 1, 1970,
0:00:00 GMT (the epoch.)

Returns:
the current time as UTC milliseconds from the epoch.

setTimeInMillis
public void setTimeInMillis(long millis)

Sets this Calendar’s current time from the given long value.

Parameters:
millis - the new time in UTC milliseconds from the epoch.

get
public final int get(int field)

Gets the value for a given time field.

Parameters:
field - the given time field.

Returns:
the value for the given time field.

set
public final void set(int field,
 int value)

Sets the time field with the given value.

Parameters:
field - the given time field. Note that the DAY_OF_WEEK field cannot be set.
value - the value to be set for the given time field.

252 CLDC Library API (beta 2)

CLDC Library API (beta 2)

equals
public boolean equals(Object obj)

Compares this calendar to the specified object. The result is true if and only if the argument is
not null and is a Calendar object that represents the same calendar as this object.

Parameters:
obj - the object to compare with.

Returns:
true if the objects are the same; false otherwise.

Overrides:
equals in class Object

before
public boolean before(Object when)

Compares the time field records. Equivalent to comparing result of conversion to UTC.

Parameters:
when - the Calendar to be compared with this Calendar.

Returns:
true if the current time of this Calendar is before the time of Calendar when; false otherwise.

after
public boolean after(Object when)

Compares the time field records. Equivalent to comparing result of conversion to UTC.

Parameters:
when - the Calendar to be compared with this Calendar.

Returns:
true if the current time of this Calendar is after the time of Calendar when; false otherwise.

setTimeZone
public void setTimeZone(TimeZone value)

Sets the time zone with the given time zone value.

Parameters:
value - the given time zone.

CLDC Library API (beta 2) 253

CLDC Library API (beta 2)

getTimeZone
public TimeZone getTimeZone()

Gets the time zone.

Returns:
the time zone object associated with this calendar.

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

254 CLDC Library API (beta 2)

CLDC Library API (beta 2)

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

java.util
Class Date
java.lang.Object
 |
 +--java.util.Date

public class Date
extends Object

The class Date represents a specific instant in time, with millisecond precision.

This Class has been subset for the MID Profile based on JDK 1.3. In the full API, the class Date had
two additional functions. It allowed the interpretation of dates as year, month, day, hour, minute, and
second values. It also allowed the formatting and parsing of date strings. Unfortunately, the API for
these functions was not amenable to internationalization. As of JDK 1.1, the Calendar class should be
used to convert between dates and time fields and the DateFormat class should be used to format and
parse date strings. The corresponding methods in Date are deprecated.

Although the Date class is intended to reflect coordinated universal time (UTC), it may not do so
exactly, depending on the host environment of the Java Virtual Machine. Nearly all modern operating
systems assume that 1 day = 24x60x60 = 86400 seconds in all cases. In UTC, however, about once
every year or two there is an extra second, called a "leap second." The leap second is always added as
the last second of the day, and always on December 31 or June 30. For example, the last minute of the
year 1995 was 61 seconds long, thanks to an added leap second. Most computer clocks are not accurate
enough to be able to reflect the leap-sec-ond distinction.

See Also:
TimeZone, Calendar

Constructor Summary
Date()
 Allocates a Date object and initializes it to represent the current time specified number of
milliseconds since the standard base time known as "the epoch", namely January 1, 1970, 00:00:00
GMT.

Date(long date)
 Allocates a Date object and initializes it to represent the specified number of milliseconds
since the standard base time known as "the epoch", namely January 1, 1970, 00:00:00 GMT.

CLDC Library API (beta 2) 255

CLDC Library API (beta 2)

Method Summary
 boolean equals(Object obj)

 Compares two dates for equality.

 long getTime()
 Returns the number of milliseconds since January 1, 1970, 00:00:00 GMT
represented by this Date object.

 int hashCode()
 Returns a hash code value for this object.

 void setTime(long time)
 Sets this Date object to represent a point in time that is time milliseconds after
January 1, 1970 00:00:00 GMT.

Methods inherited from class java.lang.Object

getClass, notify, notifyAll, toString, wait, wait, wait

Constructor Detail

Date
public Date()

Allocates a Date object and initializes it to represent the current time specified number of
milliseconds since the standard base time known as "the epoch", namely January 1, 1970,
00:00:00 GMT.
See Also:

System.currentTimeMillis()

Date
public Date(long date)

Allocates a Date object and initializes it to represent the specified number of milliseconds since
the standard base time known as "the epoch", namely January 1, 1970, 00:00:00 GMT.
Parameters:

date - the milliseconds since January 1, 1970, 00:00:00 GMT.
See Also:

System.currentTimeMillis()

Method Detail

256 CLDC Library API (beta 2)

CLDC Library API (beta 2)

getTime
public long getTime()

Returns the number of milliseconds since January 1, 1970, 00:00:00 GMT represented by this
Date object.
Returns:

the number of milliseconds since January 1, 1970, 00:00:00 GMT represented by this date.

setTime
public void setTime(long time)

Sets this Date object to represent a point in time that is time milliseconds after January 1, 1970
00:00:00 GMT.
Parameters:

time - the number of milliseconds.

equals
public boolean equals(Object obj)

Compares two dates for equality. The result is true if and only if the argument is not null and
is a Date object that represents the same point in time, to the millisecond, as this object.

Thus, two Date objects are equal if and only if the getTime method returns the same long
value for both.
Parameters:

obj - the object to compare with.
Returns:

true if the objects are the same; false otherwise.
Overrides:

equals in class Object
See Also:

getTime()

hashCode
public int hashCode()

Returns a hash code value for this object. The result is the exclusive OR of the two halves of the
primitive long value returned by the getTime() method. That is, the hash code is the value of
the expression:

 (int)(this.getTime()^(this.getTime() >>> 32))

Returns:
a hash code value for this object.

Overrides:
hashCode in class Object

CLDC Library API (beta 2) 257

CLDC Library API (beta 2)

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

258 CLDC Library API (beta 2)

CLDC Library API (beta 2)

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

java.util
Class EmptyStackException
java.lang.Object
 |
 +--java.lang.Throwable
 |
 +--java.lang.Exception
 |
 +--java.lang.RuntimeException
 |
 +--java.util.EmptyStackException

public class EmptyStackException
extends RuntimeException

Thrown by methods in the Stack class to indicate that the stack is empty.

Since:
JDK1.0

See Also:
Stack

Constructor Summary
EmptyStackException()
 Constructs a new EmptyStackException with null as its error message string.

Methods inherited from class java.lang.Throwable

getMessage, printStackTrace, toString

Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, wait, wait, wait

Constructor Detail

CLDC Library API (beta 2) 259

CLDC Library API (beta 2)

EmptyStackException
public EmptyStackException()

Constructs a new EmptyStackException with null as its error message string.

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

260 CLDC Library API (beta 2)

CLDC Library API (beta 2)

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

java.util
Interface Enumeration

public abstract interface Enumeration

An object that implements the Enumeration interface generates a series of elements, one at a time.
Successive calls to the nextElement method return successive elements of the series.

For example, to print all elements of a vector v:

 for (Enumeration e = v.elements() ; e.hasMoreElements() ;) {
 System.out.println(e.nextElement()); }

Methods are provided to enumerate through the elements of a vector, the keys of a hashtable, and the
values in a hashtable.

Since:
JDK1.0

See Also:
nextElement(), Hashtable, Hashtable.elements(), Hashtable.keys(),
Vector, Vector.elements()

Method Summary
 boolean hasMoreElements()

 Tests if this enumeration contains more elements.

 Object nextElement()
 Returns the next element of this enumeration if this enumeration object has at least
one more element to provide.

Method Detail

hasMoreElements
public boolean hasMoreElements()

Tests if this enumeration contains more elements.
Returns:

true if and only if this enumeration object contains at least one more element to provide;
false otherwise.

CLDC Library API (beta 2) 261

CLDC Library API (beta 2)

nextElement
public Object nextElement()

Returns the next element of this enumeration if this enumeration object has at least one more
element to provide.
Returns:

the next element of this enumeration.
Throws:

NoSuchElementException - if no more elements exist.

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

262 CLDC Library API (beta 2)

CLDC Library API (beta 2)

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

java.util
Class Hashtable
java.lang.Object
 |
 +--java.util.Hashtable

public class Hashtable
extends Object

This class implements a hashtable, which maps keys to values. Any non-null object can be used as a
key or as a value.

To successfully store and retrieve objects from a hashtable, the objects used as keys must implement
the hashCode method and the equals method.

An instance of Hashtable has two parameters that affect its efficiency: its capacity and its load
factor. The load factor should be between 0.0 and 1.0. When the number of entries in the hashtable
exceeds the product of the load factor and the current capacity, the capacity is increased by calling the
rehash method. Larger load factors use memory more efficiently, at the expense of larger expected
time per lookup.

If many entries are to be made into a Hashtable, creating it with a sufficiently large capacity may
allow the entries to be inserted more efficiently than letting it perform automatic rehashing as needed
to grow the table.

This example creates a hashtable of numbers. It uses the names of the numbers as keys:

 Hashtable numbers = new Hashtable();
 numbers.put("one", new Integer(1));
 numbers.put("two", new Integer(2));
 numbers.put("three", new Integer(3));

To retrieve a number, use the following code:

 Integer n = (Integer)numbers.get("two");
 if (n != null) {
 System.out.println("two = " + n);
 }

Since:
JDK1.0

See Also:
Object.equals(java.lang.Object), Object.hashCode(), rehash()

CLDC Library API (beta 2) 263

CLDC Library API (beta 2)

Constructor Summary
Hashtable()
 Constructs a new, empty hashtable with a default capacity and load factor.

Hashtable(int initialCapacity)
 Constructs a new, empty hashtable with the specified initial capacity and the specified load
factor.

Method Summary
 void clear()

 Clears this hashtable so that it contains no keys.

 boolean contains(Object value)
 Tests if some key maps into the specified value in this hashtable.

 boolean containsKey(Object key)
 Tests if the specified object is a key in this hashtable.

 Enumeration elements()
 Returns an enumeration of the values in this hashtable.

 Object get(Object key)
 Returns the value to which the specified key is mapped in this hashtable.

 boolean isEmpty()
 Tests if this hashtable maps no keys to values.

 Enumeration keys()
 Returns an enumeration of the keys in this hashtable.

 Object put(Object key, Object value)
 Maps the specified key to the specified value in this hashtable.

protected
 void

rehash()
 Rehashes the contents of the hashtable into a hashtable with a larger
capacity.

 Object remove(Object key)
 Removes the key (and its corresponding value) from this hashtable.

 int size()
 Returns the number of keys in this hashtable.

 String toString()
 Returns a rather long string representation of this hashtable.

Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, wait, wait, wait

264 CLDC Library API (beta 2)

CLDC Library API (beta 2)

Constructor Detail

Hashtable
public Hashtable(int initialCapacity)

Constructs a new, empty hashtable with the specified initial capacity and the specified load factor.
Parameters:

initialCapacity - the initial capacity of the hashtable.
Throws:

IllegalArgumentException - if the initial capacity is less than zero
Since:

JDK1.0

Hashtable
public Hashtable()

Constructs a new, empty hashtable with a default capacity and load factor.
Since:

JDK1.0

Method Detail

size
public int size()

Returns the number of keys in this hashtable.
Returns:

the number of keys in this hashtable.
Since:

JDK1.0

isEmpty
public boolean isEmpty()

Tests if this hashtable maps no keys to values.
Returns:

true if this hashtable maps no keys to values; false otherwise.
Since:

JDK1.0

CLDC Library API (beta 2) 265

CLDC Library API (beta 2)

keys
public Enumeration keys()

Returns an enumeration of the keys in this hashtable.
Returns:

an enumeration of the keys in this hashtable.
Since:

JDK1.0
See Also:

Enumeration, elements()

elements
public Enumeration elements()

Returns an enumeration of the values in this hashtable. Use the Enumeration methods on the
returned object to fetch the elements sequentially.
Returns:

an enumeration of the values in this hashtable.
Since:

JDK1.0
See Also:

Enumeration, keys()

contains
public boolean contains(Object value)

Tests if some key maps into the specified value in this hashtable. This operation is more
expensive than the containsKey method.
Parameters:

value - a value to search for.
Returns:

true if some key maps to the value argument in this hashtable; false otherwise.
Throws:

NullPointerException - if the value is null.
Since:

JDK1.0
See Also:

containsKey(java.lang.Object)

containsKey
public boolean containsKey(Object key)

Tests if the specified object is a key in this hashtable.
Parameters:

key - possible key.

266 CLDC Library API (beta 2)

CLDC Library API (beta 2)

Returns:
true if the specified object is a key in this hashtable; false otherwise.

Since:
JDK1.0

See Also:
contains(java.lang.Object)

get
public Object get(Object key)

Returns the value to which the specified key is mapped in this hashtable.
Parameters:

key - a key in the hashtable.
Returns:

the value to which the key is mapped in this hashtable; null if the key is not mapped to any
value in this hashtable.

Since:
JDK1.0

See Also:
put(java.lang.Object, java.lang.Object)

rehash
protected void rehash()

Rehashes the contents of the hashtable into a hashtable with a larger capacity. This method is
called automatically when the number of keys in the hashtable exceeds this hashtable’s capacity
and load factor.
Since:

JDK1.0

put
public Object put(Object key,
 Object value)

Maps the specified key to the specified value in this hashtable. Neither the key nor the value
can be null.

The value can be retrieved by calling the get method with a key that is equal to the original key.
Parameters:

key - the hashtable key.
value - the value.

Returns:
the previous value of the specified key in this hashtable, or null if it did not have one.

Throws:
NullPointerException - if the key or value is null.

CLDC Library API (beta 2) 267

CLDC Library API (beta 2)

Since:
JDK1.0

See Also:
Object.equals(java.lang.Object), get(java.lang.Object)

remove
public Object remove(Object key)

Removes the key (and its corresponding value) from this hashtable. This method does nothing if
the key is not in the hashtable.
Parameters:

key - the key that needs to be removed.
Returns:

the value to which the key had been mapped in this hashtable, or null if the key did not
have a mapping.

Since:
JDK1.0

clear
public void clear()

Clears this hashtable so that it contains no keys.
Since:

JDK1.0

toString
public String toString()

Returns a rather long string representation of this hashtable.
Returns:

a string representation of this hashtable.
Overrides:

toString in class Object
Since:

JDK1.0

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

268 CLDC Library API (beta 2)

CLDC Library API (beta 2)

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

java.util
Class NoSuchElementException
java.lang.Object
 |
 +--java.lang.Throwable
 |
 +--java.lang.Exception
 |
 +--java.lang.RuntimeException
 |
 +--java.util.NoSuchElementException

public class NoSuchElementException
extends RuntimeException

Thrown by the nextElement method of an Enumeration to indicate that there are no more
elements in the enumeration.

Since:
JDK1.0

See Also:
Enumeration, Enumeration.nextElement()

Constructor Summary
NoSuchElementException()
 Constructs a NoSuchElementException with null as its error message string.

NoSuchElementException(String s)
 Constructs a NoSuchElementException, saving a reference to the error message string
s for later retrieval by the getMessage method.

Methods inherited from class java.lang.Throwable

getMessage, printStackTrace, toString

Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, wait, wait, wait

CLDC Library API (beta 2) 269

CLDC Library API (beta 2)

Constructor Detail

NoSuchElementException
public NoSuchElementException()

Constructs a NoSuchElementException with null as its error message string.

NoSuchElementException
public NoSuchElementException(String s)

Constructs a NoSuchElementException, saving a reference to the error message string s for
later retrieval by the getMessage method.
Parameters:

s - the detail message.

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

270 CLDC Library API (beta 2)

CLDC Library API (beta 2)

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

java.util
Class Random
java.lang.Object
 |
 +--java.util.Random

public class Random
extends Object

An instance of this class is used to generate a stream of pseudorandom numbers. The class uses a
48-bit seed, which is modified using a linear congruential formula. (See Donald Knuth, The Art of
Computer Programming, Volume 2, Section 3.2.1.)

If two instances of Random are created with the same seed, and the same sequence of method calls is
made for each, they will generate and return identical sequences of numbers. In order to guarantee this
property, particular algorithms are specified for the class Random. Java implementations must use all
the algorithms shown here for the class Random, for the sake of absolute portability of Java code.
However, subclasses of class Random are permitted to use other algorithms, so long as they adhere to
the general contracts for all the methods.

The algorithms implemented by class Random use a protected utility method that on each
invocation can supply up to 32 pseudorandomly generated bits.

Many applications will find the random method in class Math simpler to use.

Since:
JDK1.0

Constructor Summary
Random()
 Creates a new random number generator.

Random(long seed)
 Creates a new random number generator using a single long seed: public Random(long
seed) { setSeed(seed); } Used by method next to hold the state of the pseudorandom number
generator.

CLDC Library API (beta 2) 271

CLDC Library API (beta 2)

Method Summary
protected

 int
next(int bits)
 Generates the next pseudorandom number.

 int nextInt()
 Returns the next pseudorandom, uniformly distributed int value from this
random number generator’s sequence.

 long nextLong()
 Returns the next pseudorandom, uniformly distributed long value from this
random number generator’s sequence.

 void setSeed(long seed)
 Sets the seed of this random number generator using a single long seed.

Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, toString, wait, wait,
wait

Constructor Detail

Random
public Random()

Creates a new random number generator. Its seed is initialized to a value based on the current
time:

 public Random() { this(System.currentTimeMillis()); }

See Also:
System.currentTimeMillis()

Random
public Random(long seed)

Creates a new random number generator using a single long seed:

 public Random(long seed) { setSeed(seed); }

Used by method next to hold the state of the pseudorandom number generator.
Parameters:

seed - the initial seed.

272 CLDC Library API (beta 2)

CLDC Library API (beta 2)

See Also:
setSeed(long)

Method Detail

setSeed
public void setSeed(long seed)

Sets the seed of this random number generator using a single long seed. The general contract of
setSeed is that it alters the state of this random number generator object so as to be in exactly
the same state as if it had just been created with the argument seed as a seed. The method
setSeed is implemented by class Random as follows:

 synchronized public void setSeed(long seed) {
 this.seed = (seed ^ 0x5DEECE66DL) & ((1L << 48) - 1);
 haveNextNextGaussian = false;
 }

The implementation of setSeed by class Random happens to use only 48 bits of the given seed.
In general, however, an overriding method may use all 64 bits of the long argument as a seed
value.
Parameters:

seed - the initial seed.

next
protected int next(int bits)

Generates the next pseudorandom number. Subclass should override this, as this is used by all
other methods.

The general contract of next is that it returns an int value and if the argument bits is between 1
and 32 (inclusive), then that many low-order bits of the returned value will be (approximately)
independently chosen bit values, each of which is (approximately) equally likely to be 0 or 1. The
method next is implemented by class Random as follows:

 synchronized protected int next(int bits) {
 seed = (seed * 0x5DEECE66DL + 0xBL) & ((1L << 48) - 1);
 return (int)(seed >>> (48 - bits));
 }

This is a linear congruential pseudorandom number generator, as defined by D. H. Lehmer and
described by Donald E. Knuth in The Art of Computer Programming, Volume 2: Seminumerical
Algorithms, section 3.2.1.
Parameters:

bits - random bits
Returns:

the next pseudorandom value from this random number generator’s sequence.
Since:

JDK1.1

CLDC Library API (beta 2) 273

CLDC Library API (beta 2)

nextInt
public int nextInt()

Returns the next pseudorandom, uniformly distributed int value from this random number
generator’s sequence. The general contract of nextInt is that one int value is pseudorandomly
generated and returned. All 232 possible int values are produced with (approximately) equal
probability. The method nextInt is implemented by class Random as follows:

 public int nextInt() { return next(32); }

Returns:
the next pseudorandom, uniformly distributed int value from this random number
generator’s sequence.

nextLong
public long nextLong()

Returns the next pseudorandom, uniformly distributed long value from this random number
generator’s sequence. The general contract of nextLong is that one long value is
pseudorandomly generated and returned. All 264 possible long values are produced with
(approximately) equal probability. The method nextLong is implemented by class Random as
follows:

 public long nextLong() {
 return ((long)next(32) << 32) + next(32);
 }

Returns:
the next pseudorandom, uniformly distributed long value from this random number
generator’s sequence.

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

274 CLDC Library API (beta 2)

CLDC Library API (beta 2)

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

java.util
Class Stack
java.lang.Object
 |
 +--java.util.Vector
 |
 +--java.util.Stack

public class Stack
extends Vector

The Stack class represents a last-in-first-out (LIFO) stack of objects. It extends class Vector with
five operations that allow a vector to be treated as a stack. The usual push and pop operations are
provided, as well as a method to peek at the top item on the stack, a method to test for whether the
stack is empty, and a method to search the stack for an item and discover how far it is from the top.

When a stack is first created, it contains no items.

Since:
JDK1.0

Fields inherited from class java.util.Vector

capacityIncrement, elementCount, elementData

Constructor Summary
Stack()
 Creates an empty Stack.

CLDC Library API (beta 2) 275

CLDC Library API (beta 2)

Method Summary
 boolean empty()

 Tests if this stack is empty.

 Object peek()
 Looks at the object at the top of this stack without removing it from the stack.

 Object pop()
 Removes the object at the top of this stack and returns that object as the value of
this function.

 Object push(Object item)
 Pushes an item onto the top of this stack.

 int search(Object o)
 Returns the 1-based position where an object is on this stack.

Methods inherited from class java.util.Vector

addElement, capacity, contains, copyInto, elementAt, elements,
ensureCapacity, firstElement, indexOf, indexOf, insertElementAt,
isEmpty, lastElement, lastIndexOf, lastIndexOf, removeAllElements,
removeElement, removeElementAt, setElementAt, setSize, size,
toString, trimToSize

Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, wait, wait, wait

Constructor Detail

Stack
public Stack()

Creates an empty Stack.

Method Detail

push
public Object push(Object item)

276 CLDC Library API (beta 2)

CLDC Library API (beta 2)

Pushes an item onto the top of this stack. This has exactly the same effect as:

 addElement(item)

Parameters:
item - the item to be pushed onto this stack.

Returns:
the item argument.

See Also:
Vector.addElement(java.lang.Object)

pop
public Object pop()

Removes the object at the top of this stack and returns that object as the value of this function.
Returns:

The object at the top of this stack (the last item of the Vector object).
Throws:

EmptyStackException - if this stack is empty.

peek
public Object peek()

Looks at the object at the top of this stack without removing it from the stack.
Returns:

the object at the top of this stack (the last item of the Vector object).
Throws:

EmptyStackException - if this stack is empty.

empty
public boolean empty()

Tests if this stack is empty.
Returns:

true if and only if this stack contains no items; false otherwise.

search
public int search(Object o)

Returns the 1-based position where an object is on this stack. If the object o occurs as an item in
this stack, this method returns the distance from the top of the stack of the occurrence nearest the
top of the stack; the topmost item on the stack is considered to be at distance 1. The equals
method is used to compare o to the items in this stack.
Parameters:

o - the desired object.

CLDC Library API (beta 2) 277

CLDC Library API (beta 2)

Returns:
the 1-based position from the top of the stack where the object is located; the return value -1
indicates that the object is not on the stack.

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

278 CLDC Library API (beta 2)

CLDC Library API (beta 2)

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

java.util
Class TimeZone
java.lang.Object
 |
 +--java.util.TimeZone

public abstract class TimeZone
extends Object

TimeZone represents a time zone offset, and also figures out daylight savings.

Typically, you get a TimeZone using getDefault which creates a TimeZone based on the time
zone where the program is running. For example, for a program running in Japan, getDefault
creates a TimeZone object based on Japanese Standard Time.

You can also get a TimeZone using getTimeZone along with a time zone ID. For instance, the
time zone ID for the Pacific Standard Time zone is "PST". So, you can get a PST TimeZone object
with:

 TimeZone tz = TimeZone.getTimeZone("PST");

This class is a pure subset of the java.util.TimeZone class in J2SE.

The only time zone ID that is required to be supported is "GMT".

Apart from the methods and variables being subset, the semantics of the getTimeZone() method may
also be subset: custom IDs such as "GMT-8:00" are not required to be supported.

See Also:
Calendar

Constructor Summary
TimeZone()

CLDC Library API (beta 2) 279

CLDC Library API (beta 2)

Method Summary
static String[] getAvailableIDs()

 Gets all the available IDs supported.

static TimeZone getDefault()
 Gets the default TimeZone for this host.

 String getID()
 Gets the ID of this time zone.

abstract int getOffset(int era, int year, int month, int day,
int dayOfWeek, int millis)
 Gets offset, for current date, modified in case of daylight savings.

abstract int getRawOffset()
 Gets the GMT offset for this time zone.

static TimeZone getTimeZone(String ID)
 Gets the TimeZone for the given ID.

abstract
 boolean

useDaylightTime()
 Queries if this time zone uses Daylight Savings Time.

Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, toString, wait, wait,
wait

Constructor Detail

TimeZone
public TimeZone()

Method Detail

getOffset
public abstract int getOffset(int era,
 int year,
 int month,
 int day,
 int dayOfWeek,
 int millis)

Gets offset, for current date, modified in case of daylight savings. This is the offset to add *to*
GMT to get local time. Gets the time zone offset, for current date, modified in case of daylight
savings. This is the offset to add *to* GMT to get local time. Assume that the start and end month

280 CLDC Library API (beta 2)

CLDC Library API (beta 2)

are distinct. This method may return incorrect results for rules that start at the end of February
(e.g., last Sunday in February) or the beginning of March (e.g., March 1).
Parameters:

era - The era of the given date (0 = BC, 1 = AD).
year - The year in the given date.
month - The month in the given date. Month is 0-based. e.g., 0 for January.
day - The day-in-month of the given date.
dayOfWeek - The day-of-week of the given date.
millis - The milliseconds in day in standard local time.

Returns:
The offset to add *to* GMT to get local time.

Throws:
IllegalArgumentException - the era, month, day, dayOfWeek, or millis parameters are out of
range

getRawOffset
public abstract int getRawOffset()

Gets the GMT offset for this time zone.

useDaylightTime
public abstract boolean useDaylightTime()

Queries if this time zone uses Daylight Savings Time.

getID
public String getID()

Gets the ID of this time zone.
Returns:

the ID of this time zone.

getTimeZone
public static TimeZone getTimeZone(String ID)

Gets the TimeZone for the given ID.
Parameters:

ID - the ID for a TimeZone, either an abbreviation such as "GMT", or a full name such as
"America/Los_Angeles".

The only time zone ID that is required to be supported is "GMT".

The following is information for implementers. Applications should not need to be aware of
this or rely on it, because each implementation may do it differently:

CLDC Library API (beta 2) 281

CLDC Library API (beta 2)

The Calendar will look up a class the name of which includes the platform name. The class
name will take the form:

{classRoot}.util.{platform}.CalendarImpl

The classRoot is derived from the system by looking up the system property
"microedition.implpath" If this property key is not found or the associated class is not present
then "com.sun.cldc" is used.

The platform name is derived from the system by looking for the system property
"microedition.platform". If this property key is not found or the associated class is not
present then one of two default directories are used. These are called "j2me" and "j2se". If
the property "microedition.configuration" is non-null then "j2me" is used, otherwise "j2se" is
assumed.

Returns:
the specified TimeZone, or null if the given ID cannot be understood.

getDefault
public static TimeZone getDefault()

Gets the default TimeZone for this host. The source of the default TimeZone may vary with
implementation.
Returns:

a default TimeZone.

getAvailableIDs
public static String[] getAvailableIDs()

Gets all the available IDs supported.
Returns:

an array of IDs.

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

282 CLDC Library API (beta 2)

CLDC Library API (beta 2)

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

java.util
Class Vector
java.lang.Object
 |
 +--java.util.Vector

Direct Known Subclasses:
Stack

public class Vector
extends Object

The Vector class implements a growable array of objects. Like an array, it contains components that
can be accessed using an integer index. However, the size of a Vector can grow or shrink as needed
to accommodate adding and removing items after the Vector has been created.

Each vector tries to optimize storage management by maintaining a capacity and a
capacityIncrement. The capacity is always at least as large as the vector size; it is usually
larger because as components are added to the vector, the vector’s storage increases in chunks the size
of capacityIncrement. An application can increase the capacity of a vector before inserting a
large number of components; this reduces the amount of incremental reallocation.

Since:
JDK1.0

Field Summary
protected int capacityIncrement

 The amount by which the capacity of the vector is automatically
incremented when its size becomes greater than its capacity.

protected int elementCount
 The number of valid components in the vector.

protected
 Object[]

elementData
 The array buffer into which the components of the vector are stored.

CLDC Library API (beta 2) 283

CLDC Library API (beta 2)

Constructor Summary
Vector()
 Constructs an empty vector.

Vector(int initialCapacity)
 Constructs an empty vector with the specified initial capacity.

Vector(int initialCapacity, int capacityIncrement)
 Constructs an empty vector with the specified initial capacity and capacity increment.

Method Summary
 void addElement(Object obj)

 Adds the specified component to the end of this vector, increasing its size by
one.

 int capacity()
 Returns the current capacity of this vector.

 boolean contains(Object elem)
 Tests if the specified object is a component in this vector.

 void copyInto(Object[] anArray)
 Copies the components of this vector into the specified array.

 Object elementAt(int index)
 Returns the component at the specified index.

 Enumeration elements()
 Returns an enumeration of the components of this vector.

 void ensureCapacity(int minCapacity)
 Increases the capacity of this vector, if necessary, to ensure that it can hold at
least the number of components specified by the minimum capacity argument.

 Object firstElement()
 Returns the first component of this vector.

 int indexOf(Object elem)
 Searches for the first occurence of the given argument, testing for equality
using the equals method.

 int indexOf(Object elem, int index)
 Searches for the first occurence of the given argument, beginning the search at
index, and testing for equality using the equals method.

 void insertElementAt(Object obj, int index)
 Inserts the specified object as a component in this vector at the specified
index.

 boolean isEmpty()
 Tests if this vector has no components.

284 CLDC Library API (beta 2)

CLDC Library API (beta 2)

 Object lastElement()
 Returns the last component of the vector.

 int lastIndexOf(Object elem)
 Returns the index of the last occurrence of the specified object in this vector.

 int lastIndexOf(Object elem, int index)
 Searches backwards for the specified object, starting from the specified index,
and returns an index to it.

 void removeAllElements()
 Removes all components from this vector and sets its size to zero.

 boolean removeElement(Object obj)
 Removes the first occurrence of the argument from this vector.

 void removeElementAt(int index)
 Deletes the component at the specified index.

 void setElementAt(Object obj, int index)
 Sets the component at the specified index of this vector to be the specified
object.

 void setSize(int newSize)
 Sets the size of this vector.

 int size()
 Returns the number of components in this vector.

 String toString()
 Returns a string representation of this vector.

 void trimToSize()
 Trims the capacity of this vector to be the vector’s current size.

Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, wait, wait, wait

Field Detail

elementData
protected Object[] elementData

The array buffer into which the components of the vector are stored. The capacity of the vector is
the length of this array buffer.
Since:

JDK1.0

CLDC Library API (beta 2) 285

CLDC Library API (beta 2)

elementCount
protected int elementCount

The number of valid components in the vector.
Since:

JDK1.0

capacityIncrement
protected int capacityIncrement

The amount by which the capacity of the vector is automatically incremented when its size
becomes greater than its capacity. If the capacity increment is 0, the capacity of the vector is
doubled each time it needs to grow.
Since:

JDK1.0

Constructor Detail

Vector
public Vector(int initialCapacity,
 int capacityIncrement)

Constructs an empty vector with the specified initial capacity and capacity increment.
Parameters:

initialCapacity - the initial capacity of the vector.
capacityIncrement - the amount by which the capacity is increased when the vector
overflows.

Throws:
IllegalArgumentException - if the specified initial capacity is negative

Vector
public Vector(int initialCapacity)

Constructs an empty vector with the specified initial capacity.
Parameters:

initialCapacity - the initial capacity of the vector.
Since:

JDK1.0

286 CLDC Library API (beta 2)

CLDC Library API (beta 2)

Vector
public Vector()

Constructs an empty vector.
Since:

JDK1.0

Method Detail

copyInto
public final void copyInto(Object[] anArray)

Copies the components of this vector into the specified array. The array must be big enough to
hold all the objects in this vector.
Parameters:

anArray - the array into which the components get copied.
Since:

JDK1.0

trimToSize
public final void trimToSize()

Trims the capacity of this vector to be the vector’s current size. An application can use this
operation to minimize the storage of a vector.
Since:

JDK1.0

ensureCapacity
public final void ensureCapacity(int minCapacity)

Increases the capacity of this vector, if necessary, to ensure that it can hold at least the number of
components specified by the minimum capacity argument.
Parameters:

minCapacity - the desired minimum capacity.
Since:

JDK1.0

setSize
public final void setSize(int newSize)

Sets the size of this vector. If the new size is greater than the current size, new null items are
added to the end of the vector. If the new size is less than the current size, all components at index
newSize and greater are discarded.

CLDC Library API (beta 2) 287

CLDC Library API (beta 2)

Parameters:
newSize - the new size of this vector.

Since:
JDK1.0

capacity
public final int capacity()

Returns the current capacity of this vector.
Returns:

the current capacity of this vector.
Since:

JDK1.0

size
public final int size()

Returns the number of components in this vector.
Returns:

the number of components in this vector.
Since:

JDK1.0

isEmpty
public final boolean isEmpty()

Tests if this vector has no components.
Returns:

true if this vector has no components; false otherwise.
Since:

JDK1.0

elements
public final Enumeration elements()

Returns an enumeration of the components of this vector.
Returns:

an enumeration of the components of this vector.
Since:

JDK1.0
See Also:

Enumeration

288 CLDC Library API (beta 2)

CLDC Library API (beta 2)

contains
public final boolean contains(Object elem)

Tests if the specified object is a component in this vector.
Parameters:

elem - an object.
Returns:

true if the specified object is a component in this vector; false otherwise.
Since:

JDK1.0

indexOf
public final int indexOf(Object elem)

Searches for the first occurence of the given argument, testing for equality using the equals
method.
Parameters:

elem - an object.
Returns:

the index of the first occurrence of the argument in this vector; returns -1 if the object is not
found.

Since:
JDK1.0

See Also:
Object.equals(java.lang.Object)

indexOf
public final int indexOf(Object elem,
 int index)

Searches for the first occurence of the given argument, beginning the search at index, and
testing for equality using the equals method.
Parameters:

elem - an object.
index - the index to start searching from.

Returns:
the index of the first occurrence of the object argument in this vector at position index or
later in the vector; returns -1 if the object is not found.

Since:
JDK1.0

See Also:
Object.equals(java.lang.Object)

CLDC Library API (beta 2) 289

CLDC Library API (beta 2)

lastIndexOf
public final int lastIndexOf(Object elem)

Returns the index of the last occurrence of the specified object in this vector.
Parameters:

elem - the desired component.
Returns:

the index of the last occurrence of the specified object in this vector; returns -1 if the object
is not found.

Since:
JDK1.0

lastIndexOf
public final int lastIndexOf(Object elem,
 int index)

Searches backwards for the specified object, starting from the specified index, and returns an
index to it.
Parameters:

elem - the desired component.
index - the index to start searching from.

Returns:
the index of the last occurrence of the specified object in this vector at position less than
index in the vector; -1 if the object is not found.

Since:
JDK1.0

elementAt
public final Object elementAt(int index)

Returns the component at the specified index.
Parameters:

index - an index into this vector.
Returns:

the component at the specified index.
Throws:

ArrayIndexOutOfBoundsException - if an invalid index was given.
Since:

JDK1.0

firstElement
public final Object firstElement()

Returns the first component of this vector.

290 CLDC Library API (beta 2)

CLDC Library API (beta 2)

Returns:
the first component of this vector.

Throws:
NoSuchElementException - if this vector has no components.

Since:
JDK1.0

lastElement
public final Object lastElement()

Returns the last component of the vector.
Returns:

the last component of the vector, i.e., the component at index size() - 1.
Throws:

NoSuchElementException - if this vector is empty.
Since:

JDK1.0

setElementAt
public final void setElementAt(Object obj,
 int index)

Sets the component at the specified index of this vector to be the specified object. The previous
component at that position is discarded.

The index must be a value greater than or equal to 0 and less than the current size of the vector.
Parameters:

obj - what the component is to be set to.
index - the specified index.

Throws:
ArrayIndexOutOfBoundsException - if the index was invalid.

Since:
JDK1.0

See Also:
size()

removeElementAt
public final void removeElementAt(int index)

Deletes the component at the specified index. Each component in this vector with an index greater
or equal to the specified index is shifted downward to have an index one smaller than the value
it had previously.

The index must be a value greater than or equal to 0 and less than the current size of the vector.
Parameters:

index - the index of the object to remove.

CLDC Library API (beta 2) 291

CLDC Library API (beta 2)

Throws:
ArrayIndexOutOfBoundsException - if the index was invalid.

Since:
JDK1.0

See Also:
size()

insertElementAt
public final void insertElementAt(Object obj,
 int index)

Inserts the specified object as a component in this vector at the specified index. Each component
in this vector with an index greater or equal to the specified index is shifted upward to have an
index one greater than the value it had previously.

The index must be a value greater than or equal to 0 and less than or equal to the current size of
the vector.
Parameters:

obj - the component to insert.
index - where to insert the new component.

Throws:
ArrayIndexOutOfBoundsException - if the index was invalid.

Since:
JDK1.0

See Also:
size()

addElement
public final void addElement(Object obj)

Adds the specified component to the end of this vector, increasing its size by one. The capacity of
this vector is increased if its size becomes greater than its capacity.
Parameters:

obj - the component to be added.
Since:

JDK1.0

removeElement
public final boolean removeElement(Object obj)

Removes the first occurrence of the argument from this vector. If the object is found in this
vector, each component in the vector with an index greater or equal to the object’s index is shifted
downward to have an index one smaller than the value it had previously.
Parameters:

obj - the component to be removed.

292 CLDC Library API (beta 2)

CLDC Library API (beta 2)

Returns:
true if the argument was a component of this vector; false otherwise.

Since:
JDK1.0

removeAllElements
public final void removeAllElements()

Removes all components from this vector and sets its size to zero.
Since:

JDK1.0

toString
public final String toString()

Returns a string representation of this vector.
Returns:

a string representation of this vector.
Overrides:

toString in class Object
Since:

JDK1.0

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

CLDC Library API (beta 2) 293

CLDC Library API (beta 2)

Overview Package Class Tree Deprecated Index Help
 PREV PACKAGE NEXT PACKAGE FRAMES NO FRAMES

Package javax.microedition.io

Interface Summary
Connection This is the most basic type of generic connection.

ContentConnection
This interface defines the stream connection over which content is
passed.

Datagram This is the generic datagram interface.

DatagramConnection

This interface defines the capabilities that a datagram connection must
have. The parameter string describing the target of the connection takes
the form: {protocol}:[//{host}]:{port} A datagram connection can be
opened in a "client" mode or a "server" mode.

InputConnection
This interface defines the capabilities that an input stream connection
must have.

OutputConnection
This interface defines the capabilities that an output stream connection
must have.

StreamConnection
This interface defines the capabilities that a stream connection must
have.

StreamConnectionNotifier
This interface defines the capabilities that a connection notifier must
have.

Class Summary

Connector
This class is a placeholder for the static methods used to create all the connection
objects.

Exception Summary

ConnectionNotFoundException
This class is used to signal that a connection target cannot be
found

Overview Package Class Tree Deprecated Index Help
 PREV PACKAGE NEXT PACKAGE FRAMES NO FRAMES

294 CLDC Library API (beta 2)

CLDC Library API (beta 2)

CLDC Library API (beta 2) 295

CLDC Library API (beta 2)

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

javax.microedition.io
Interface Connection
All Known Subinterfaces:

ContentConnection, DatagramConnection, InputConnection, OutputConnection,
StreamConnection, StreamConnectionNotifier

public abstract interface Connection

This is the most basic type of generic connection. Only the close method is defined. The open method
defined here because opening is always done by the Connector.open() methods.

Method Summary
 void close()

 Close the connection.

Method Detail

close
public void close()
 throws IOException

Close the connection.

When the connection has been closed access to all methods except this one will cause an an
IOException to be thrown. Closing an already closed connection has no effect. Streams derived
from a connection may remain open after this method is called. This may cause the connection to
remain open (but access to its methods are rejected) until any derived streams are closed
themselves.
Throws:

IOException - If an I/O error occurs

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

296 CLDC Library API (beta 2)

CLDC Library API (beta 2)

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

javax.microedition.io
Class ConnectionNotFoundException
java.lang.Object
 |
 +--java.lang.Throwable
 |
 +--java.lang.Exception
 |
 +--java.io.IOException
 |
 +--javax.microedition.io.ConnectionNotFoundException

public class ConnectionNotFoundException
extends IOException

This class is used to signal that a connection target cannot be found

Constructor Summary
ConnectionNotFoundException()
 Constructs a ConnectionNotFoundException with no detail message.

ConnectionNotFoundException(String s)
 Constructs a ConnectionNotFoundException with the specified detail message.

Methods inherited from class java.lang.Throwable

getMessage, printStackTrace, toString

Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, wait, wait, wait

Constructor Detail

CLDC Library API (beta 2) 297

CLDC Library API (beta 2)

ConnectionNotFoundException
public ConnectionNotFoundException()

Constructs a ConnectionNotFoundException with no detail message. A detail message is a String
that describes this particular exception.

ConnectionNotFoundException
public ConnectionNotFoundException(String s)

Constructs a ConnectionNotFoundException with the specified detail message. A detail message
is a String that describes this particular exception.
Parameters:

s - the detail message

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

298 CLDC Library API (beta 2)

CLDC Library API (beta 2)

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

javax.microedition.io
Class Connector
java.lang.Object
 |
 +--javax.microedition.io.Connector

public class Connector
extends Object

This class is a placeholder for the static methods used to create all the connection objects.

This is done by dynamically looking up a class the name of which is formed from the platform name
and the protocol of the requested connection. The parameter string describing the target conforms to
the URL format as described in RFC 1808. This takes the general form:

{scheme}:[{target}][{parms}]

Where {scheme} is the name of a protocol such as http}.

The {target} is normally some kind of network address, but protocols may regard this as a fairly
flexible field when the connection is not network oriented.

Any {parms} are formed as a series of equates on the form ";x=y" such as ;type=a.

An option second parameter may be specified to the open function. The is a mode flag that indicated to
the protocol handler the intentions of the calling code. The options here are to specify if the connection
is going to be read (READ), written (WRITE), or both (READ_WRITE). The validity of these flag
settings is protocol dependent. For instance a connection for a printer would not allow read access, and
would throw an IllegalArgumentException if this was attempted. Omitting this parameter results in
READ_WRITE being used by default.

An optional third parameter is a boolean flag to indicate if the calling code has been written in such a
way as to handle timeout exceptions. If this is selected the protocol may throw an
InterruptedIOException when it detects a timeout condition. This flag is only a hint to the protocol
handler and it is no guarantee that such exceptions will be throws. Omitting this parameter results in no
exceptions being thrown. The timeout period is not specified in the open call because this is protocol
specific. Protocol implementors can either hardwire an appropriate value or read them from an external
source such as the system properties.

Because of the common occurrence of opening connections just to gain access to an input or output
stream four functions are provided for this purpose. See also: DatagramConnection for information
relating to datagram addressing

CLDC Library API (beta 2) 299

CLDC Library API (beta 2)

Field Summary
static int READ

 Access mode

static int READ_WRITE
 Access mode

static int WRITE
 Access mode

Method Summary
static Connection open(String name)

 Create and open a Connection

static Connection open(String name, int mode)
 Create and open a Connection

static Connection open(String name, int mode, boolean timeouts)
 Create and open a Connection

static DataInputStream openDataInputStream(String name)
 Create and open a connection input stream

static DataOutputStream openDataOutputStream(String name)
 Create and open a connection output stream

static InputStream openInputStream(String name)
 Create and open a connection input stream

static OutputStream openOutputStream(String name)
 Create and open a connection output stream

Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, toString, wait, wait,
wait

Field Detail

READ
public static final int READ

Access mode

300 CLDC Library API (beta 2)

CLDC Library API (beta 2)

WRITE
public static final int WRITE

Access mode

READ_WRITE
public static final int READ_WRITE

Access mode

Method Detail

open
public static Connection open(String name)
 throws IOException

Create and open a Connection
Parameters:

string - The URL for the connection.
Returns:

A new Connection object.
Throws:

IllegalArgumentException - If a parameter is invalid.
ConnectionNotFoundException - If the connection cannot be found.
IOException - If some other kind of I/O error occurs.

open
public static Connection open(String name,
 int mode)
 throws IOException

Create and open a Connection
Parameters:

string - The URL for the connection.
mode - The access mode.

Returns:
A new Connection object.

Throws:
IllegalArgumentException - If a parameter is invalid.
ConnectionNotFoundException - If the connection cannot be found.
IOException - If some other kind of I/O error occurs.

CLDC Library API (beta 2) 301

CLDC Library API (beta 2)

open
public static Connection open(String name,
 int mode,
 boolean timeouts)
 throws IOException

Create and open a Connection
Parameters:

string - The URL for the connection
mode - The access mode
timeouts - A flag to indicate that the called wants timeout exceptions

Returns:
A new Connection object

Throws:
IllegalArgumentException - If a parameter is invalid.
ConnectionNotFoundException - If the connection cannot be found.
IOException - If some other kind of I/O error occurs.

openDataInputStream
public static DataInputStream openDataInputStream(String name)
 throws IOException

Create and open a connection input stream
Parameters:

string - The URL for the connection.
Returns:

A DataInputStream.
Throws:

IllegalArgumentException - If a parameter is invalid.
ConnectionNotFoundException - If the connection cannot be found.
IOException - If some other kind of I/O error occurs.

openDataOutputStream
public static DataOutputStream openDataOutputStream(String name)
 throws IOException

Create and open a connection output stream
Parameters:

string - The URL for the connection.
Returns:

A DataOutputStream.
Throws:

IllegalArgumentException - If a parameter is invalid.
ConnectionNotFoundException - If the connection cannot be found.
IOException - If some other kind of I/O error occurs.

302 CLDC Library API (beta 2)

CLDC Library API (beta 2)

openInputStream
public static InputStream openInputStream(String name)
 throws IOException

Create and open a connection input stream
Parameters:

string - The URL for the connection.
Returns:

An InputStream.
Throws:

IllegalArgumentException - If a parameter is invalid.
ConnectionNotFoundException - If the connection cannot be found.
IOException - If some other kind of I/O error occurs.

openOutputStream
public static OutputStream openOutputStream(String name)
 throws IOException

Create and open a connection output stream
Parameters:

string - The URL for the connection.
Returns:

An OutputStream.
Throws:

IllegalArgumentException - If a parameter is invalid.
ConnectionNotFoundException - If the connection cannot be found.
IOException - If some other kind of I/O error occurs.

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

CLDC Library API (beta 2) 303

CLDC Library API (beta 2)

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

javax.microedition.io
Interface ContentConnection

public abstract interface ContentConnection
extends StreamConnection

This interface defines the stream connection over which content is passed.

Method Summary
 String getEncoding()

 Returns a string describing the encoding of the content which the resource connected
to is providing.

 long getLength()
 Returns the length of the content which is being provided.

 String getType()
 Returns the type of content that the resource connected to is providing.

Methods inherited from interface javax.microedition.io.InputConnection

openDataInputStream, openInputStream

Methods inherited from interface javax.microedition.io.OutputConnection

openDataOutputStream, openOutputStream

Method Detail

getType
public String getType()

Returns the type of content that the resource connected to is providing. E.g. if the connection is
via HTTP, then the value of the content-type header field is returned.

304 CLDC Library API (beta 2)

CLDC Library API (beta 2)

Returns:
the content type of the resource that the URL references, or null if not known.

getEncoding
public String getEncoding()

Returns a string describing the encoding of the content which the resource connected to is
providing. E.g. if the connection is via HTTP, the value of the content-encoding header
field is returned.
Returns:

the content encoding of the resource that the URL references, or null if not known.

getLength
public long getLength()

Returns the length of the content which is being provided. E.g. if the connection is via HTTP,
then the value of the content-length header field is returned.
Returns:

the content length of the resource that this connection’s URL references, or -1 if the content
length is not known.

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

CLDC Library API (beta 2) 305

CLDC Library API (beta 2)

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

javax.microedition.io
Interface Datagram

public abstract interface Datagram
extends DataInput, DataOutput

This is the generic datagram interface. It represents an object that will act as the holder of data to be
send or received from a datagram connection. The DataInput and DataOutput interfaces are extended
by this interface to provide a simple way to read and write binary data in and out of the datagram
buffer. A special function reset() may be called to reset the read/write point to the beginning of the
buffer.

Method Summary
 String getAddress()

 Get the address in the datagram

 byte[] getData()
 Get the buffer

 int getLength()
 Get the length

 int getOffset()
 Get the offset

 void reset()
 Reset the read/write pointer and zeros the offset and length parameters.

 void setAddress(Datagram reference)
 Set datagram address, copying the address from another datagram.

 void setAddress(String addr)
 Set datagram address.

 void setData(byte[] buffer, int offset, int len)
 Set the buffer, offset and length

 void setLength(int len)
 Set the length

306 CLDC Library API (beta 2)

CLDC Library API (beta 2)

Methods inherited from interface java.io.DataInput

readBoolean, readByte, readChar, readFully, readFully, readInt,
readLong, readShort, readUnsignedByte, readUnsignedShort, readUTF,
skipBytes

Methods inherited from interface java.io.DataOutput

write, write, write, writeBoolean, writeByte, writeChar, writeChars,
writeInt, writeLong, writeShort, writeUTF

Method Detail

getAddress
public String getAddress()

Get the address in the datagram
Returns:

the address in string form, or null if no address was set

getData
public byte[] getData()

Get the buffer
Returns:

the data buffer

getLength
public int getLength()

Get the length
Returns:

the length of the data

getOffset
public int getOffset()

Get the offset
Returns:

the offset into the data buffer

CLDC Library API (beta 2) 307

CLDC Library API (beta 2)

setAddress
public void setAddress(String addr)
 throws IOException

Set datagram address. The parameter string describing the target of the datagram takes the form:

 {protocol}:{target}

E.g. The "target" can be "//{host}:{port}" (but is not necessarily limited to this.)
So in this example a datagram connection for sending to a server could be addressed as so:

 datagram://123.456.789.12:1234

Note that if the address of a datagram is not specified, then it defaults to that of the connection.
Parameters:

addr - the new target address as a URL
Throws:

IllegalArgumentException - if the address is not valid

setAddress
public void setAddress(Datagram reference)

Set datagram address, copying the address from another datagram.
Parameters:

reference - the datagram who’s address will be copied as the new target address for this
datagram.

Throws:
IllegalArgumentException - if the address is not valid

setLength
public void setLength(int len)

Set the length
Parameters:

len - the new length of the data
Throws:

IllegalArgumentException - if the length is negative or larger than the buffer

setData
public void setData(byte[] buffer,
 int offset,
 int len)

Set the buffer, offset and length
Parameters:

addr - the data buffer
offset - the offset into the data buffer

308 CLDC Library API (beta 2)

CLDC Library API (beta 2)

len - the length of the data in the buffer
Throws:

IllegalArgumentException - if the length or offset fall outside the buffer

reset
public void reset()

Reset the read/write pointer and zeros the offset and length parameters.

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

CLDC Library API (beta 2) 309

CLDC Library API (beta 2)

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

javax.microedition.io
Interface DatagramConnection

public abstract interface DatagramConnection
extends Connection

This interface defines the capabilities that a datagram connection must have.

The parameter string describing the target of the connection takes the form:

{protocol}:[//{host}]:{port}

A datagram connection can be opened in a "client" mode or a "server" mode. If the "//{host}" is
missing then it is opened as a "server" (by "server", this means that a client application initiates
communication). When the "//{host}" is specified the connection is opened as a client.

Examples:

A datagram connection for accepting datagrams
datagram://:1234

A datagram connection for sending to a server:
datagram://123.456.789.12:1234

Note that the port number in "server mode" (unspecified host name) is that of the receiving port. The
port number in "client mode" (host name specified) is that of the target port. The reply to port in both
cases is never unspecified. In "server mode", the same port number is used for both receiving and
sending. In "client mode", the reply-to port is always dynamically allocated.

310 CLDC Library API (beta 2)

CLDC Library API (beta 2)

Method Summary
 int getMaximumLength()

 Get the maximum length a datagram can be.

 int getNominalLength()
 Get the nominal length of a datagram.

 Datagram newDatagram(byte[] buf, int size)
 Make a new datagram object

 Datagram newDatagram(byte[] buf, int size, String addr)
 Make a new datagram object

 Datagram newDatagram(int size)
 Make a new datagram object automatically allocating a buffer

 Datagram newDatagram(int size, String addr)
 Make a new datagram object

 void receive(Datagram dgram)
 Receive a datagram

 void send(Datagram dgram)
 Send a datagram

Methods inherited from interface javax.microedition.io.Connection

close

Method Detail

getMaximumLength
public int getMaximumLength()
 throws IOException

Get the maximum length a datagram can be.
Returns:

address The length.

getNominalLength
public int getNominalLength()
 throws IOException

Get the nominal length of a datagram.
Returns:

address The length.

CLDC Library API (beta 2) 311

CLDC Library API (beta 2)

send
public void send(Datagram dgram)
 throws IOException

Send a datagram
Parameters:

dgram - A datagram.
Throws:

IOException - If an I/O error occurs.
InterruptedIOException - Timeout or upon closing the connection with outstanding I/O.

receive
public void receive(Datagram dgram)
 throws IOException

Receive a datagram
Parameters:

dgram - A datagram.
Throws:

IOException - If an I/O error occurs.
InterruptedIOException - Timeout or upon closing the connection with outstanding I/O.

newDatagram
public Datagram newDatagram(int size)
 throws IOException

Make a new datagram object automatically allocating a buffer
Parameters:

size - The length of the buffer to be allocated for the datagram
Returns:

A new datagram

newDatagram
public Datagram newDatagram(int size,
 String addr)
 throws IOException

Make a new datagram object
Parameters:

size - The length of the buffer to be used
addr - The address to which the datagram must go

Returns:
A new datagram

312 CLDC Library API (beta 2)

CLDC Library API (beta 2)

newDatagram
public Datagram newDatagram(byte[] buf,
 int size)
 throws IOException

Make a new datagram object
Parameters:

buf - The buffer to be used in the datagram
size - The length of the buffer to be allocated for the datagram

Returns:
A new datagram

Throws:
IllegalArgumentException - if the length is negative or larger than the buffer

newDatagram
public Datagram newDatagram(byte[] buf,
 int size,
 String addr)
 throws IOException

Make a new datagram object
Parameters:

buf - The buffer to be used in the datagram
size - The length of the buffer to be used
addr - The address to which the datagram must go

Returns:
A new datagram

Throws:
IllegalArgumentException - if the length is negative or larger than the buffer

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

CLDC Library API (beta 2) 313

CLDC Library API (beta 2)

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

javax.microedition.io
Interface InputConnection
All Known Subinterfaces:

ContentConnection, StreamConnection

public abstract interface InputConnection
extends Connection

This interface defines the capabilities that an input stream connection must have.

Method Summary
 DataInputStream openDataInputStream()

 Open and return a data input stream for a connection.

 InputStream openInputStream()
 Open and return an input stream for a connection.

Methods inherited from interface javax.microedition.io.Connection

close

Method Detail

openInputStream
public InputStream openInputStream()
 throws IOException

Open and return an input stream for a connection.
Returns:

An input stream
Throws:

IOException - If an I/O error occurs

314 CLDC Library API (beta 2)

CLDC Library API (beta 2)

openDataInputStream
public DataInputStream openDataInputStream()
 throws IOException

Open and return a data input stream for a connection.
Returns:

An input stream
Throws:

IOException - If an I/O error occurs

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

CLDC Library API (beta 2) 315

CLDC Library API (beta 2)

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

javax.microedition.io
Interface OutputConnection
All Known Subinterfaces:

ContentConnection, StreamConnection

public abstract interface OutputConnection
extends Connection

This interface defines the capabilities that an output stream connection must have.

Method Summary
 DataOutputStream openDataOutputStream()

 Open and return a data output stream for a connection.

 OutputStream openOutputStream()
 Open and return an output stream for a connection.

Methods inherited from interface javax.microedition.io.Connection

close

Method Detail

openOutputStream
public OutputStream openOutputStream()
 throws IOException

Open and return an output stream for a connection.
Returns:

An output stream
Throws:

IOException - If an I/O error occurs

316 CLDC Library API (beta 2)

CLDC Library API (beta 2)

openDataOutputStream
public DataOutputStream openDataOutputStream()
 throws IOException

Open and return a data output stream for a connection.
Returns:

An output stream
Throws:

IOException - If an I/O error occurs

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

CLDC Library API (beta 2) 317

CLDC Library API (beta 2)

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

javax.microedition.io
Interface StreamConnection
All Known Subinterfaces:

ContentConnection

public abstract interface StreamConnection
extends InputConnection, OutputConnection

This interface defines the capabilities that a stream connection must have.

Methods inherited from interface javax.microedition.io.InputConnection

openDataInputStream, openInputStream

Methods inherited from interface javax.microedition.io.OutputConnection

openDataOutputStream, openOutputStream

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

318 CLDC Library API (beta 2)

CLDC Library API (beta 2)

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

javax.microedition.io
Interface StreamConnectionNotifier

public abstract interface StreamConnectionNotifier
extends Connection

This interface defines the capabilities that a connection notifier must have.

Method Summary
 StreamConnection acceptAndOpen()

 Returns a StreamConnection that represents a server side socket
connection

Methods inherited from interface javax.microedition.io.Connection

close

Method Detail

acceptAndOpen
public StreamConnection acceptAndOpen()
 throws IOException

Returns a StreamConnection that represents a server side socket connection
Returns:

A socket to communicate with a client.
Throws:

IOException - If an I/O error occurs.

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

CLDC Library API (beta 2) 319

CLDC Library API (beta 2)

Overview Package Class Tree Deprecated Index Help
 PREV NEXT FRAMES NO FRAMES

A B C D E F G H I J K L M N O P R S T U V W Y

A
abs(int) - Static method in class java.lang.Math

Returns the absolute value of an int value.
abs(long) - Static method in class java.lang.Math

Returns the absolute value of a long value.
acceptAndOpen() - Method in interface javax.microedition.io.StreamConnectionNotifier

Returns a StreamConnection that represents a server side socket connection
activeCount() - Static method in class java.lang.Thread

Returns the current number of active threads in the VM.
addElement(Object) - Method in class java.util.Vector

Adds the specified component to the end of this vector, increasing its size by one.
after(Object) - Method in class java.util.Calendar

Compares the time field records.
append(boolean) - Method in class java.lang.StringBuffer

Appends the string representation of the boolean argument to the string buffer.
append(char) - Method in class java.lang.StringBuffer

Appends the string representation of the char argument to this string buffer.
append(char[]) - Method in class java.lang.StringBuffer

Appends the string representation of the char array argument to this string buffer.
append(char[], int, int) - Method in class java.lang.StringBuffer

Appends the string representation of a subarray of the char array argument to this string buffer.
append(int) - Method in class java.lang.StringBuffer

Appends the string representation of the int argument to this string buffer.
append(long) - Method in class java.lang.StringBuffer

Appends the string representation of the long argument to this string buffer.
append(Object) - Method in class java.lang.StringBuffer

Appends the string representation of the Object argument to this string buffer.
append(String) - Method in class java.lang.StringBuffer

Appends the string to this string buffer.
APRIL - Static variable in class java.util.Calendar

Value of the MONTH field indicating the fourth month of the year.
ArithmeticException - exception java.lang.ArithmeticException.

Thrown when an exceptional arithmetic condition has occurred.
ArithmeticException() - Constructor for class java.lang.ArithmeticException

Constructs an ArithmeticException with no detail message.
ArithmeticException(String) - Constructor for class java.lang.ArithmeticException

Constructs an ArithmeticException with the specified detail message.
arraycopy(Object, int, Object, int, int) - Static method in class java.lang.System

Copies an array from the specified source array, beginning at the specified position, to the
specified position of the destination array.

ArrayIndexOutOfBoundsException - exception java.lang.ArrayIndexOutOfBoundsException.
Thrown to indicate that an array has been accessed with an illegal index.

320 CLDC Library API (beta 2)

CLDC Library API (beta 2)

ArrayIndexOutOfBoundsException() - Constructor for class
java.lang.ArrayIndexOutOfBoundsException

Constructs an ArrayIndexOutOfBoundsException with no detail message.
ArrayIndexOutOfBoundsException(int) - Constructor for class
java.lang.ArrayIndexOutOfBoundsException

Constructs a new ArrayIndexOutOfBoundsException class with an argument indicating
the illegal index.

ArrayIndexOutOfBoundsException(String) - Constructor for class
java.lang.ArrayIndexOutOfBoundsException

Constructs an ArrayIndexOutOfBoundsException class with the specified detail
message.

ArrayStoreException - exception java.lang.ArrayStoreException.
Thrown to indicate that an attempt has been made to store the wrong type of object into an array
of objects.

ArrayStoreException() - Constructor for class java.lang.ArrayStoreException
Constructs an ArrayStoreException with no detail message.

ArrayStoreException(String) - Constructor for class java.lang.ArrayStoreException
Constructs an ArrayStoreException with the specified detail message.

AUGUST - Static variable in class java.util.Calendar
Value of the MONTH field indicating the eighth month of the year.

available() - Method in class java.io.InputStream
Returns the number of bytes that can be read (or skipped over) from this input stream without
blocking by the next caller of a method for this input stream.

available() - Method in class java.io.ByteArrayInputStream
Returns the number of bytes that can be read from this input stream without blocking.

available() - Method in class java.io.DataInputStream
Returns the number of bytes that can be read from this input stream without blocking.

B
before(Object) - Method in class java.util.Calendar

Compares the time field records.
Boolean - class java.lang.Boolean.

The Boolean class wraps a value of the primitive type boolean in an object.
Boolean(boolean) - Constructor for class java.lang.Boolean

Allocates a Boolean object representing the value argument.
booleanValue() - Method in class java.lang.Boolean

Returns the value of this Boolean object as a boolean primitive.
buf - Variable in class java.io.ByteArrayInputStream

An array of bytes that was provided by the creator of the stream.
buf - Variable in class java.io.ByteArrayOutputStream

The buffer where data is stored.
Byte - class java.lang.Byte.

The Byte class is the standard wrapper for byte values.
Byte(byte) - Constructor for class java.lang.Byte

Constructs a Byte object initialized to the specified byte value.
ByteArrayInputStream - class java.io.ByteArrayInputStream.

A ByteArrayInputStream contains an internal buffer that contains bytes that may be read
from the stream.

CLDC Library API (beta 2) 321

CLDC Library API (beta 2)

ByteArrayInputStream(byte[]) - Constructor for class java.io.ByteArrayInputStream
Creates a ByteArrayInputStream so that it uses buf as its buffer array.

ByteArrayInputStream(byte[], int, int) - Constructor for class java.io.ByteArrayInputStream
Creates ByteArrayInputStream that uses buf as its buffer array.

ByteArrayOutputStream - class java.io.ByteArrayOutputStream.
This class implements an output stream in which the data is written into a byte array.

ByteArrayOutputStream() - Constructor for class java.io.ByteArrayOutputStream
Creates a new byte array output stream.

ByteArrayOutputStream(int) - Constructor for class java.io.ByteArrayOutputStream
Creates a new byte array output stream, with a buffer capacity of the specified size, in bytes.

bytesTransferred - Variable in class java.io.InterruptedIOException
Reports how many bytes had been transferred as part of the I/O operation before it was
interrupted.

byteValue() - Method in class java.lang.Byte
Returns the value of this Byte as a byte.

byteValue() - Method in class java.lang.Integer
Returns the value of this Integer as a byte.

C
Calendar - class java.util.Calendar.

Calendar is an abstract class for getting and setting dates using a set of integer fields such as
YEAR, MONTH, DAY, and so on.

Calendar() - Constructor for class java.util.Calendar
Constructs a Calendar with the default time zone and default locale.

capacity() - Method in class java.lang.StringBuffer
Returns the current capacity of the String buffer.

capacity() - Method in class java.util.Vector
Returns the current capacity of this vector.

capacityIncrement - Variable in class java.util.Vector
The amount by which the capacity of the vector is automatically incremented when its size
becomes greater than its capacity.

Character - class java.lang.Character.
The Character class wraps a value of the primitive type char in an object.

Character(char) - Constructor for class java.lang.Character
Constructs a Character object and initializes it so that it represents the primitive value
argument.

charAt(int) - Method in class java.lang.StringBuffer
The specified character of the sequence currently represented by the string buffer, as indicated by
the index argument, is returned.

charAt(int) - Method in class java.lang.String
Returns the character at the specified index.

charValue() - Method in class java.lang.Character
Returns the value of this Character object.

checkError() - Method in class java.io.PrintStream
Flush the stream and check its error state.

Class - class java.lang.Class.
Instances of the class Class represent classes and interfaces in a running Java application.

322 CLDC Library API (beta 2)

CLDC Library API (beta 2)

ClassCastException - exception java.lang.ClassCastException.
Thrown to indicate that the code has attempted to cast an object to a subclass of which it is not an
instance.

ClassCastException() - Constructor for class java.lang.ClassCastException
Constructs a ClassCastException with no detail message.

ClassCastException(String) - Constructor for class java.lang.ClassCastException
Constructs a ClassCastException with the specified detail message.

ClassNotFoundException - exception java.lang.ClassNotFoundException.
Thrown when an application tries to load in a class through its string name using: The forName
method in class Class.

ClassNotFoundException() - Constructor for class java.lang.ClassNotFoundException
Constructs a ClassNotFoundException with no detail message.

ClassNotFoundException(String) - Constructor for class java.lang.ClassNotFoundException
Constructs a ClassNotFoundException with the specified detail message.

clear() - Method in class java.util.Hashtable
Clears this hashtable so that it contains no keys.

close() - Method in class java.io.Reader
Close the stream.

close() - Method in class java.io.InputStreamReader
Close the stream.

close() - Method in class java.io.InputStream
Closes this input stream and releases any system resources associated with the stream.

close() - Method in class java.io.OutputStream
Closes this output stream and releases any system resources associated with this stream.

close() - Method in class java.io.DataOutputStream
Closes this output stream and releases any system resources associated with the stream.

close() - Method in class java.io.ByteArrayInputStream
Closes this input stream and releases any system resources associated with the stream.

close() - Method in class java.io.Writer
Close the stream, flushing it first.

close() - Method in class java.io.OutputStreamWriter
Close the stream.

close() - Method in class java.io.DataInputStream
Closes this input stream and releases any system resources associated with the stream.

close() - Method in class java.io.ByteArrayOutputStream
Closes this output stream and releases any system resources associated with this stream.

close() - Method in class java.io.PrintStream
Close the stream.

close() - Method in interface javax.microedition.io.Connection
Close the connection.

compareTo(String) - Method in class java.lang.String
Compares two strings lexicographically.

concat(String) - Method in class java.lang.String
Concatenates the specified string to the end of this string.

Connection - interface javax.microedition.io.Connection.
This is the most basic type of generic connection.

ConnectionNotFoundException - exception javax.microedition.io.ConnectionNotFoundException.
This class is used to signal that a connection target cannot be found

ConnectionNotFoundException() - Constructor for class
javax.microedition.io.ConnectionNotFoundException

Constructs a ConnectionNotFoundException with no detail message.

CLDC Library API (beta 2) 323

CLDC Library API (beta 2)

ConnectionNotFoundException(String) - Constructor for class
javax.microedition.io.ConnectionNotFoundException

Constructs a ConnectionNotFoundException with the specified detail message.
Connector - class javax.microedition.io.Connector.

This class is a placeholder for the static methods used to create all the connection objects.
contains(Object) - Method in class java.util.Vector

Tests if the specified object is a component in this vector.
contains(Object) - Method in class java.util.Hashtable

Tests if some key maps into the specified value in this hashtable.
containsKey(Object) - Method in class java.util.Hashtable

Tests if the specified object is a key in this hashtable.
ContentConnection - interface javax.microedition.io.ContentConnection.

This interface defines the stream connection over which content is passed.
copyInto(Object[]) - Method in class java.util.Vector

Copies the components of this vector into the specified array.
count - Variable in class java.io.ByteArrayInputStream

The index one greater than the last valid character in the input stream buffer.
count - Variable in class java.io.ByteArrayOutputStream

The number of valid bytes in the buffer.
currentThread() - Static method in class java.lang.Thread

Returns a reference to the currently executing thread object.
currentTimeMillis() - Static method in class java.lang.System

Returns the current time in milliseconds.

D
Datagram - interface javax.microedition.io.Datagram.

This is the generic datagram interface.
DatagramConnection - interface javax.microedition.io.DatagramConnection.

This interface defines the capabilities that a datagram connection must have. The parameter string
describing the target of the connection takes the form: {protocol}:[//{host}]:{port} A datagram
connection can be opened in a "client" mode or a "server" mode.

DataInput - interface java.io.DataInput.
The DataInput interface provides for reading bytes from a binary stream and reconstructing
from them data in any of the Java primitive types.

DataInputStream - class java.io.DataInputStream.
A data input stream lets an application read primitive Java data types from an underlying input
stream in a machine-independent way.

DataInputStream(InputStream) - Constructor for class java.io.DataInputStream
Creates a DataInputStream and saves its argument, the input stream in, for later use.

DataOutput - interface java.io.DataOutput.
The DataOutput interface provides for converting data from any of the Java primitive types to
a series of bytes and writing these bytes to a binary stream.

DataOutputStream - class java.io.DataOutputStream.
A data input stream lets an application write primitive Java data types to an output stream in a
portable way.

DataOutputStream(OutputStream) - Constructor for class java.io.DataOutputStream
Creates a new data output stream to write data to the specified underlying output stream.

324 CLDC Library API (beta 2)

CLDC Library API (beta 2)

Date - class java.util.Date.
The class Date represents a specific instant in time, with millisecond precision.

DATE - Static variable in class java.util.Calendar
Field number for get and set indicating the day of the month.

Date() - Constructor for class java.util.Date
Allocates a Date object and initializes it to represent the current time specified number of
milliseconds since the standard base time known as "the epoch", namely January 1, 1970,
00:00:00 GMT.

Date(long) - Constructor for class java.util.Date
Allocates a Date object and initializes it to represent the specified number of milliseconds since
the standard base time known as "the epoch", namely January 1, 1970, 00:00:00 GMT.

DAY_OF_MONTH - Static variable in class java.util.Calendar
Field number for get and set indicating the day of the month.

DAY_OF_WEEK - Static variable in class java.util.Calendar
Field number for get and set indicating the day of the week.

DECEMBER - Static variable in class java.util.Calendar
Value of the MONTH field indicating the twelfth month of the year.

delete(int, int) - Method in class java.lang.StringBuffer
Removes the characters in a substring of this StringBuffer.

deleteCharAt(int) - Method in class java.lang.StringBuffer
Removes the character at the specified position in this StringBuffer (shortening the
StringBuffer by one character).

digit(char, int) - Static method in class java.lang.Character
Returns the numeric value of the character ch in the specified radix.

E
elementAt(int) - Method in class java.util.Vector

Returns the component at the specified index.
elementCount - Variable in class java.util.Vector

The number of valid components in the vector.
elementData - Variable in class java.util.Vector

The array buffer into which the components of the vector are stored.
elements() - Method in class java.util.Vector

Returns an enumeration of the components of this vector.
elements() - Method in class java.util.Hashtable

Returns an enumeration of the values in this hashtable.
empty() - Method in class java.util.Stack

Tests if this stack is empty.
EmptyStackException - exception java.util.EmptyStackException.

Thrown by methods in the Stack class to indicate that the stack is empty.
EmptyStackException() - Constructor for class java.util.EmptyStackException

Constructs a new EmptyStackException with null as its error message string.
endsWith(String) - Method in class java.lang.String

Tests if this string ends with the specified suffix.
ensureCapacity(int) - Method in class java.lang.StringBuffer

Ensures that the capacity of the buffer is at least equal to the specified minimum.
ensureCapacity(int) - Method in class java.util.Vector

Increases the capacity of this vector, if necessary, to ensure that it can hold at least the number of
components specified by the minimum capacity argument.

CLDC Library API (beta 2) 325

CLDC Library API (beta 2)

Enumeration - interface java.util.Enumeration.
An object that implements the Enumeration interface generates a series of elements, one at a time.

EOFException - exception java.io.EOFException.
Signals that an end of file or end of stream has been reached unexpectedly during input.

EOFException() - Constructor for class java.io.EOFException
Constructs an EOFException with null as its error detail message.

EOFException(String) - Constructor for class java.io.EOFException
Constructs an EOFException with the specified detail message.

equals(Object) - Method in class java.lang.Object
Indicates whether some other object is "equal to" this one.

equals(Object) - Method in class java.lang.Character
Compares this object against the specified object.

equals(Object) - Method in class java.lang.Long
Compares this object against the specified object.

equals(Object) - Method in class java.lang.Byte
Compares this object to the specified object.

equals(Object) - Method in class java.lang.Integer
Compares this object to the specified object.

equals(Object) - Method in class java.lang.Boolean
Returns true if and only if the argument is not null and is a Boolean object that represents
the same boolean value as this object.

equals(Object) - Method in class java.lang.String
Compares this string to the specified object.

equals(Object) - Method in class java.lang.Short
Compares this object to the specified object.

equals(Object) - Method in class java.util.Calendar
Compares this calendar to the specified object.

equals(Object) - Method in class java.util.Date
Compares two dates for equality.

equalsIgnoreCase(String) - Method in class java.lang.String
Compares this String to another String, ignoring case considerations.

err - Static variable in class java.lang.System
The "standard" error output stream.

Error - error java.lang.Error.
An Error is a subclass of Throwable that indicates serious problems that a reasonable
application should not try to catch.

Error() - Constructor for class java.lang.Error
Constructs an Error with no specified detail message.

Error(String) - Constructor for class java.lang.Error
Constructs an Error with the specified detail message.

Exception - exception java.lang.Exception.
The class Exception and its subclasses are a form of Throwable that indicates conditions
that a reasonable application might want to catch.

Exception() - Constructor for class java.lang.Exception
Constructs an Exception with no specified detail message.

Exception(String) - Constructor for class java.lang.Exception
Constructs an Exception with the specified detail message.

exit(int) - Static method in class java.lang.System
Terminates the currently running Java application.

326 CLDC Library API (beta 2)

CLDC Library API (beta 2)

exit(int) - Method in class java.lang.Runtime
Terminates the currently running Java application.

F
FEBRUARY - Static variable in class java.util.Calendar

Value of the MONTH field indicating the second month of the year.
firstElement() - Method in class java.util.Vector

Returns the first component of this vector.
flush() - Method in class java.io.OutputStream

Flushes this output stream and forces any buffered output bytes to be written out.
flush() - Method in class java.io.DataOutputStream

Flushes this data output stream.
flush() - Method in class java.io.Writer

Flush the stream.
flush() - Method in class java.io.OutputStreamWriter

Flush the stream.
flush() - Method in class java.io.PrintStream

Flush the stream.
forName(String) - Static method in class java.lang.Class

Returns the Class object associated with the class with the given string name.
freeMemory() - Method in class java.lang.Runtime

Returns the amount of free memory in the system.
FRIDAY - Static variable in class java.util.Calendar

Value of the DAY_OF_WEEK field indicating Friday.

G
gc() - Static method in class java.lang.System

Runs the garbage collector.
gc() - Method in class java.lang.Runtime

Runs the garbage collector.
get(int) - Method in class java.util.Calendar

Gets the value for a given time field.
get(Object) - Method in class java.util.Hashtable

Returns the value to which the specified key is mapped in this hashtable.
getAddress() - Method in interface javax.microedition.io.Datagram

Get the address in the datagram
getAvailableIDs() - Static method in class java.util.TimeZone

Gets all the available IDs supported.
getBytes() - Method in class java.lang.String

Convert this String into bytes according to the platform’s default character encoding, storing
the result into a new byte array.

getBytes(String) - Method in class java.lang.String
Convert this String into bytes according to the specified character encoding, storing the result
into a new byte array.

getChars(int, int, char[], int) - Method in class java.lang.StringBuffer
Characters are copied from this string buffer into the destination character array dst.

CLDC Library API (beta 2) 327

CLDC Library API (beta 2)

getChars(int, int, char[], int) - Method in class java.lang.String
Copies characters from this string into the destination character array.

getClass() - Method in class java.lang.Object
Returns the runtime class of an object.

getData() - Method in interface javax.microedition.io.Datagram
Get the buffer

getDefault() - Static method in class java.util.TimeZone
Gets the default TimeZone for this host.

getEncoding() - Method in interface javax.microedition.io.ContentConnection
Returns a string describing the encoding of the content which the resource connected to is
providing.

getID() - Method in class java.util.TimeZone
Gets the ID of this time zone.

getInstance() - Static method in class java.util.Calendar
Gets a calendar using the default time zone and default locale.

getInstance(TimeZone) - Static method in class java.util.Calendar
Gets a calendar using the specified time zone and default locale.

getLength() - Method in interface javax.microedition.io.Datagram
Get the length

getLength() - Method in interface javax.microedition.io.ContentConnection
Returns the length of the content which is being provided.

getMaximumLength() - Method in interface javax.microedition.io.DatagramConnection
Get the maximum length a datagram can be.

getMessage() - Method in class java.lang.Throwable
Returns the error message string of this throwable object.

getName() - Method in class java.lang.Class
Returns the fully-qualified name of the entity (class, interface, array class, primitive type, or void)
represented by this Class object, as a String.

getNominalLength() - Method in interface javax.microedition.io.DatagramConnection
Get the nominal length of a datagram.

getOffset() - Method in interface javax.microedition.io.Datagram
Get the offset

getOffset(int, int, int, int, int, int) - Method in class java.util.TimeZone
Gets offset, for current date, modified in case of daylight savings.

getPriority() - Method in class java.lang.Thread
Returns this thread’s priority.

getProperty(String) - Static method in class java.lang.System
Gets the system property indicated by the specified key.

getRawOffset() - Method in class java.util.TimeZone
Gets the GMT offset for this time zone.

getResourceAsStream(String) - Method in class java.lang.Class
Finds a resource with a given name.

getRuntime() - Static method in class java.lang.Runtime
Returns the runtime object associated with the current Java application.

getTime() - Method in class java.util.Calendar
Gets this Calendar’s current time.

getTime() - Method in class java.util.Date
Returns the number of milliseconds since January 1, 1970, 00:00:00 GMT represented by this
Date object.

328 CLDC Library API (beta 2)

CLDC Library API (beta 2)

getTimeInMillis() - Method in class java.util.Calendar
Gets this Calendar’s current time as a long expressed in milliseconds after January 1, 1970,
0:00:00 GMT (the epoch.)

getTimeZone() - Method in class java.util.Calendar
Gets the time zone.

getTimeZone(String) - Static method in class java.util.TimeZone
Gets the TimeZone for the given ID.

getType() - Method in interface javax.microedition.io.ContentConnection
Returns the type of content that the resource connected to is providing.

H
hashCode() - Method in class java.lang.Object

Returns a hash code value for the object.
hashCode() - Method in class java.lang.Character

Returns a hash code for this Character.
hashCode() - Method in class java.lang.Long

Computes a hashcode for this Long.
hashCode() - Method in class java.lang.Byte

Returns a hashcode for this Byte.
hashCode() - Method in class java.lang.Integer

Returns a hashcode for this Integer.
hashCode() - Method in class java.lang.Boolean

Returns a hash code for this Boolean object.
hashCode() - Method in class java.lang.String

Returns a hashcode for this string.
hashCode() - Method in class java.lang.Short

Returns a hashcode for this Short.
hashCode() - Method in class java.util.Date

Returns a hash code value for this object.
Hashtable - class java.util.Hashtable.

This class implements a hashtable, which maps keys to values.
Hashtable() - Constructor for class java.util.Hashtable

Constructs a new, empty hashtable with a default capacity and load factor.
Hashtable(int) - Constructor for class java.util.Hashtable

Constructs a new, empty hashtable with the specified initial capacity and the specified load factor.
hasMoreElements() - Method in interface java.util.Enumeration

Tests if this enumeration contains more elements.
HOUR_OF_DAY - Static variable in class java.util.Calendar

Field number for get and set indicating the hour of the day.

I
identityHashCode(Object) - Static method in class java.lang.System

Returns the same hashcode for the given object as would be returned by the default method
hashCode(), whether or not the given object’s class overrides hashCode().

IllegalAccessException - exception java.lang.IllegalAccessException.
Thrown when an application tries to load in a class, but the currently executing method does not
have access to the definition of the specified class, because the class is not public and in another

CLDC Library API (beta 2) 329

CLDC Library API (beta 2)

package.
IllegalAccessException() - Constructor for class java.lang.IllegalAccessException

Constructs an IllegalAccessException without a detail message.
IllegalAccessException(String) - Constructor for class java.lang.IllegalAccessException

Constructs an IllegalAccessException with a detail message.
IllegalArgumentException - exception java.lang.IllegalArgumentException.

Thrown to indicate that a method has been passed an illegal or inappropriate argument.
IllegalArgumentException() - Constructor for class java.lang.IllegalArgumentException

Constructs an IllegalArgumentException with no detail message.
IllegalArgumentException(String) - Constructor for class java.lang.IllegalArgumentException

Constructs an IllegalArgumentException with the specified detail message.
IllegalMonitorStateException - exception java.lang.IllegalMonitorStateException.

Thrown to indicate that a thread has attempted to wait on an object’s monitor or to notify other
threads waiting on an object’s monitor without owning the specified monitor.

IllegalMonitorStateException() - Constructor for class java.lang.IllegalMonitorStateException
Constructs an IllegalMonitorStateException with no detail message.

IllegalMonitorStateException(String) - Constructor for class java.lang.IllegalMonitorStateException
Constructs an IllegalMonitorStateException with the specified detail message.

IllegalThreadStateException - exception java.lang.IllegalThreadStateException.
Thrown to indicate that a thread is not in an appropriate state for the requested operation.

IllegalThreadStateException() - Constructor for class java.lang.IllegalThreadStateException
Constructs an IllegalThreadStateException with no detail message.

IllegalThreadStateException(String) - Constructor for class java.lang.IllegalThreadStateException
Constructs an IllegalThreadStateException with the specified detail message.

in - Variable in class java.io.InputStreamReader
The underlying character-input stream.

in - Variable in class java.io.DataInputStream
The input stream

indexOf(int) - Method in class java.lang.String
Returns the index within this string of the first occurrence of the specified character.

indexOf(int, int) - Method in class java.lang.String
Returns the index within this string of the first occurrence of the specified character, starting the
search at the specified index.

indexOf(Object) - Method in class java.util.Vector
Searches for the first occurence of the given argument, testing for equality using the equals
method.

indexOf(Object, int) - Method in class java.util.Vector
Searches for the first occurence of the given argument, beginning the search at index, and
testing for equality using the equals method.

IndexOutOfBoundsException - exception java.lang.IndexOutOfBoundsException.
Thrown to indicate that an index of some sort (such as to an array, to a string, or to a vector) is out
of range.

IndexOutOfBoundsException() - Constructor for class java.lang.IndexOutOfBoundsException
Constructs an IndexOutOfBoundsException with no detail message.

IndexOutOfBoundsException(String) - Constructor for class java.lang.IndexOutOfBoundsException
Constructs an IndexOutOfBoundsException with the specified detail message.

InputConnection - interface javax.microedition.io.InputConnection.
This interface defines the capabilities that an input stream connection must have.

InputStream - class java.io.InputStream.
This abstract class is the superclass of all classes representing an input stream of bytes.

330 CLDC Library API (beta 2)

CLDC Library API (beta 2)

InputStream() - Constructor for class java.io.InputStream

InputStreamReader - class java.io.InputStreamReader.
An InputStreamReader is a bridge from byte streams to character streams: It reads bytes and
translates them into characters according to a specified character encoding.

InputStreamReader(InputStream) - Constructor for class java.io.InputStreamReader
Create an InputStreamReader that uses the default character encoding.

InputStreamReader(InputStream, String) - Constructor for class java.io.InputStreamReader
Create an InputStreamReader that uses the named character encoding.

insert(int, boolean) - Method in class java.lang.StringBuffer
Inserts the string representation of the boolean argument into this string buffer.

insert(int, char) - Method in class java.lang.StringBuffer
Inserts the string representation of the char argument into this string buffer.

insert(int, char[]) - Method in class java.lang.StringBuffer
Inserts the string representation of the char array argument into this string buffer.

insert(int, int) - Method in class java.lang.StringBuffer
Inserts the string representation of the second int argument into this string buffer.

insert(int, long) - Method in class java.lang.StringBuffer
Inserts the string representation of the long argument into this string buffer.

insert(int, Object) - Method in class java.lang.StringBuffer
Inserts the string representation of the Object argument into this string buffer.

insert(int, String) - Method in class java.lang.StringBuffer
Inserts the string into this string buffer.

insertElementAt(Object, int) - Method in class java.util.Vector
Inserts the specified object as a component in this vector at the specified index.

InstantiationException - exception java.lang.InstantiationException.
Thrown when an application tries to create an instance of a class using the newInstance
method in class Class, but the specified class object cannot be instantiated because it is an
interface or is an abstract class.

InstantiationException() - Constructor for class java.lang.InstantiationException
Constructs an InstantiationException with no detail message.

InstantiationException(String) - Constructor for class java.lang.InstantiationException
Constructs an InstantiationException with the specified detail message.

Integer - class java.lang.Integer.
The Integer class wraps a value of the primitive type int in an object.

Integer(int) - Constructor for class java.lang.Integer
Constructs a newly allocated Integer object that represents the primitive int argument.

InterruptedException - exception java.lang.InterruptedException.
Thrown when a thread is waiting, sleeping, or otherwise paused for a long time and another thread
interrupts it using the interrupt method in class Thread.

InterruptedException() - Constructor for class java.lang.InterruptedException
Constructs an InterruptedException with no detail message.

InterruptedException(String) - Constructor for class java.lang.InterruptedException
Constructs an InterruptedException with the specified detail message.

InterruptedIOException - exception java.io.InterruptedIOException.
Signals that an I/O operation has been interrupted.

InterruptedIOException() - Constructor for class java.io.InterruptedIOException
Constructs an InterruptedIOException with null as its error detail message.

InterruptedIOException(String) - Constructor for class java.io.InterruptedIOException
Constructs an InterruptedIOException with the specified detail message.

CLDC Library API (beta 2) 331

CLDC Library API (beta 2)

intValue() - Method in class java.lang.Integer
Returns the value of this Integer as an int.

IOException - exception java.io.IOException.
Signals that an I/O exception of some sort has occurred.

IOException() - Constructor for class java.io.IOException
Constructs an IOException with null as its error detail message.

IOException(String) - Constructor for class java.io.IOException
Constructs an IOException with the specified detail message.

isAlive() - Method in class java.lang.Thread
Tests if this thread is alive.

isArray() - Method in class java.lang.Class
Determines if this Class object represents an array class.

isAssignableFrom(Class) - Method in class java.lang.Class
Determines if the class or interface represented by this Class object is either the same as, or is a
superclass or superinterface of, the class or interface represented by the specified Class
parameter.

isDigit(char) - Static method in class java.lang.Character
Determines if the specified character is a digit.

isEmpty() - Method in class java.util.Vector
Tests if this vector has no components.

isEmpty() - Method in class java.util.Hashtable
Tests if this hashtable maps no keys to values.

isInstance(Object) - Method in class java.lang.Class
Determines if the specified Object is assignment-compatible with the object represented by this
Class.

isInterface() - Method in class java.lang.Class
Determines if the specified Class object represents an interface type.

isLowerCase(char) - Static method in class java.lang.Character
Determines if the specified character is a lowercase character.

isUpperCase(char) - Static method in class java.lang.Character
Determines if the specified character is an uppercase character.

J
JANUARY - Static variable in class java.util.Calendar

Value of the MONTH field indicating the first month of the year.
java.io - package java.io

java.lang - package java.lang

java.util - package java.util

javax.microedition.io - package javax.microedition.io

join() - Method in class java.lang.Thread

Waits for this thread to die.
JULY - Static variable in class java.util.Calendar

Value of the MONTH field indicating the seventh month of the year.

332 CLDC Library API (beta 2)

CLDC Library API (beta 2)

JUNE - Static variable in class java.util.Calendar
Value of the MONTH field indicating the sixth month of the year.

K
keys() - Method in class java.util.Hashtable

Returns an enumeration of the keys in this hashtable.

L
lastElement() - Method in class java.util.Vector

Returns the last component of the vector.
lastIndexOf(int) - Method in class java.lang.String

Returns the index within this string of the last occurrence of the specified character.
lastIndexOf(int, int) - Method in class java.lang.String

Returns the index within this string of the last occurrence of the specified character, searching
backward starting at the specified index.

lastIndexOf(Object) - Method in class java.util.Vector
Returns the index of the last occurrence of the specified object in this vector.

lastIndexOf(Object, int) - Method in class java.util.Vector
Searches backwards for the specified object, starting from the specified index, and returns an
index to it.

length() - Method in class java.lang.StringBuffer
Returns the length (character count) of this string buffer.

length() - Method in class java.lang.String
Returns the length of this string.

lock - Variable in class java.io.Reader
The object used to synchronize operations on this stream.

lock - Variable in class java.io.Writer
The object used to synchronize operations on this stream.

Long - class java.lang.Long.
The Long class wraps a value of the primitive type long in an object.

Long(long) - Constructor for class java.lang.Long
Constructs a newly allocated Long object that represents the primitive long argument.

longValue() - Method in class java.lang.Long
Returns the value of this Long as a long value.

longValue() - Method in class java.lang.Integer
Returns the value of this Integer as a long.

M
MARCH - Static variable in class java.util.Calendar

Value of the MONTH field indicating the third month of the year.
mark - Variable in class java.io.ByteArrayInputStream

The currently marked position in the stream.

CLDC Library API (beta 2) 333

CLDC Library API (beta 2)

mark(int) - Method in class java.io.Reader
Mark the present position in the stream.

mark(int) - Method in class java.io.InputStreamReader
Mark the present position in the stream.

mark(int) - Method in class java.io.InputStream
Marks the current position in this input stream.

mark(int) - Method in class java.io.ByteArrayInputStream
Set the current marked position in the stream.

mark(int) - Method in class java.io.DataInputStream
Marks the current position in this input stream.

markSupported() - Method in class java.io.Reader
Tell whether this stream supports the mark() operation.

markSupported() - Method in class java.io.InputStreamReader
Tell whether this stream supports the mark() operation.

markSupported() - Method in class java.io.InputStream
Tests if this input stream supports the mark and reset methods.

markSupported() - Method in class java.io.ByteArrayInputStream
Tests if ByteArrayInputStream supports mark/reset.

markSupported() - Method in class java.io.DataInputStream
Tests if this input stream supports the mark and reset methods.

Math - class java.lang.Math.
The class Math contains methods for performing basic numeric operations.

MAX_PRIORITY - Static variable in class java.lang.Thread
The maximum priority that a thread can have.

MAX_RADIX - Static variable in class java.lang.Character
The maximum radix available for conversion to and from Strings.

MAX_VALUE - Static variable in class java.lang.Character
The constant value of this field is the largest value of type char.

MAX_VALUE - Static variable in class java.lang.Long
The largest value of type long.

MAX_VALUE - Static variable in class java.lang.Byte
The maximum value a Byte can have.

MAX_VALUE - Static variable in class java.lang.Integer
The largest value of type int.

MAX_VALUE - Static variable in class java.lang.Short
The maximum value a Short can have.

max(int, int) - Static method in class java.lang.Math
Returns the greater of two int values.

max(long, long) - Static method in class java.lang.Math
Returns the greater of two long values.

MAY - Static variable in class java.util.Calendar
Value of the MONTH field indicating the fifth month of the year.

MILLISECOND - Static variable in class java.util.Calendar
Field number for get and set indicating the millisecond within the second.

MIN_PRIORITY - Static variable in class java.lang.Thread
The minimum priority that a thread can have.

MIN_RADIX - Static variable in class java.lang.Character
The minimum radix available for conversion to and from Strings.

MIN_VALUE - Static variable in class java.lang.Character
The constant value of this field is the smallest value of type char.

334 CLDC Library API (beta 2)

CLDC Library API (beta 2)

MIN_VALUE - Static variable in class java.lang.Long
The smallest value of type long.

MIN_VALUE - Static variable in class java.lang.Byte
The minimum value a Byte can have.

MIN_VALUE - Static variable in class java.lang.Integer
The smallest value of type int.

MIN_VALUE - Static variable in class java.lang.Short
The minimum value a Short can have.

min(int, int) - Static method in class java.lang.Math
Returns the smaller of two int values.

min(long, long) - Static method in class java.lang.Math
Returns the smaller of two long values.

MINUTE - Static variable in class java.util.Calendar
Field number for get and set indicating the minute within the hour.

MONDAY - Static variable in class java.util.Calendar
Value of the DAY_OF_WEEK field indicating Monday.

MONTH - Static variable in class java.util.Calendar
Field number for get and set indicating the month.

N
NegativeArraySizeException - exception java.lang.NegativeArraySizeException.

Thrown if an application tries to create an array with negative size.
NegativeArraySizeException() - Constructor for class java.lang.NegativeArraySizeException

Constructs a NegativeArraySizeException with no detail message.
NegativeArraySizeException(String) - Constructor for class java.lang.NegativeArraySizeException

Constructs a NegativeArraySizeException with the specified detail message.
newDatagram(byte[], int) - Method in interface javax.microedition.io.DatagramConnection

Make a new datagram object
newDatagram(byte[], int, String) - Method in interface javax.microedition.io.DatagramConnection

Make a new datagram object
newDatagram(int) - Method in interface javax.microedition.io.DatagramConnection

Make a new datagram object automatically allocating a buffer
newDatagram(int, String) - Method in interface javax.microedition.io.DatagramConnection

Make a new datagram object
newInstance() - Method in class java.lang.Class

Creates a new instance of a class.
next(int) - Method in class java.util.Random

Generates the next pseudorandom number.
nextElement() - Method in interface java.util.Enumeration

Returns the next element of this enumeration if this enumeration object has at least one more
element to provide.

nextInt() - Method in class java.util.Random
Returns the next pseudorandom, uniformly distributed int value from this random number
generator’s sequence.

nextLong() - Method in class java.util.Random
Returns the next pseudorandom, uniformly distributed long value from this random number
generator’s sequence.

CLDC Library API (beta 2) 335

CLDC Library API (beta 2)

NORM_PRIORITY - Static variable in class java.lang.Thread
The default priority that is assigned to a thread.

NoSuchElementException - exception java.util.NoSuchElementException.
Thrown by the nextElement method of an Enumeration to indicate that there are no more
elements in the enumeration.

NoSuchElementException() - Constructor for class java.util.NoSuchElementException
Constructs a NoSuchElementException with null as its error message string.

NoSuchElementException(String) - Constructor for class java.util.NoSuchElementException
Constructs a NoSuchElementException, saving a reference to the error message string s for
later retrieval by the getMessage method.

notify() - Method in class java.lang.Object
Wakes up a single thread that is waiting on this object’s monitor.

notifyAll() - Method in class java.lang.Object
Wakes up all threads that are waiting on this object’s monitor.

NOVEMBER - Static variable in class java.util.Calendar
Value of the MONTH field indicating the eleventh month of the year.

NullPointerException - exception java.lang.NullPointerException.
Thrown when an application attempts to use null in a case where an object is required.

NullPointerException() - Constructor for class java.lang.NullPointerException
Constructs a NullPointerException with no detail message.

NullPointerException(String) - Constructor for class java.lang.NullPointerException
Constructs a NullPointerException with the specified detail message.

NumberFormatException - exception java.lang.NumberFormatException.
Thrown to indicate that the application has attempted to convert a string to one of the numeric
types, but that the string does not have the appropriate format.

NumberFormatException() - Constructor for class java.lang.NumberFormatException
Constructs a NumberFormatException with no detail message.

NumberFormatException(String) - Constructor for class java.lang.NumberFormatException
Constructs a NumberFormatException with the specified detail message.

O
Object - class java.lang.Object.

Class Object is the root of the class hierarchy.
Object() - Constructor for class java.lang.Object

OCTOBER - Static variable in class java.util.Calendar

Value of the MONTH field indicating the tenth month of the year.
open(String) - Static method in class javax.microedition.io.Connector

Create and open a Connection
open(String, int) - Static method in class javax.microedition.io.Connector

Create and open a Connection
open(String, int, boolean) - Static method in class javax.microedition.io.Connector

Create and open a Connection
openDataInputStream() - Method in interface javax.microedition.io.InputConnection

Open and return a data input stream for a connection.
openDataInputStream(String) - Static method in class javax.microedition.io.Connector

Create and open a connection input stream

336 CLDC Library API (beta 2)

CLDC Library API (beta 2)

openDataOutputStream() - Method in interface javax.microedition.io.OutputConnection
Open and return a data output stream for a connection.

openDataOutputStream(String) - Static method in class javax.microedition.io.Connector
Create and open a connection output stream

openInputStream() - Method in interface javax.microedition.io.InputConnection
Open and return an input stream for a connection.

openInputStream(String) - Static method in class javax.microedition.io.Connector
Create and open a connection input stream

openOutputStream() - Method in interface javax.microedition.io.OutputConnection
Open and return an output stream for a connection.

openOutputStream(String) - Static method in class javax.microedition.io.Connector
Create and open a connection output stream

out - Variable in class java.io.DataOutputStream
The output stream

out - Variable in class java.io.OutputStreamWriter
The underlying character-output stream.

out - Static variable in class java.lang.System
The "standard" output stream.

OutOfMemoryError - error java.lang.OutOfMemoryError.
Thrown when the Java Virtual Machine cannot allocate an object because it is out of memory, and
no more memory could be made available by the garbage collector.

OutOfMemoryError() - Constructor for class java.lang.OutOfMemoryError
Constructs an OutOfMemoryError with no detail message.

OutOfMemoryError(String) - Constructor for class java.lang.OutOfMemoryError
Constructs an OutOfMemoryError with the specified detail message.

OutputConnection - interface javax.microedition.io.OutputConnection.
This interface defines the capabilities that an output stream connection must have.

OutputStream - class java.io.OutputStream.
This abstract class is the superclass of all classes representing an output stream of bytes.

OutputStream() - Constructor for class java.io.OutputStream

OutputStreamWriter - class java.io.OutputStreamWriter.
An OutputStreamWriter is a bridge from character streams to byte streams: Characters written to
it are translated into bytes according to a specified character encoding.

OutputStreamWriter(OutputStream) - Constructor for class java.io.OutputStreamWriter
Create an OutputStreamWriter that uses the default character encoding.

OutputStreamWriter(OutputStream, String) - Constructor for class java.io.OutputStreamWriter
Create an OutputStreamWriter that uses the named character encoding.

P
parseInt(String) - Static method in class java.lang.Integer

Parses the string argument as a signed decimal integer.
parseInt(String, int) - Static method in class java.lang.Integer

Parses the string argument as a signed integer in the radix specified by the second argument.
peek() - Method in class java.util.Stack

Looks at the object at the top of this stack without removing it from the stack.
pop() - Method in class java.util.Stack

Removes the object at the top of this stack and returns that object as the value of this function.

CLDC Library API (beta 2) 337

CLDC Library API (beta 2)

pos - Variable in class java.io.ByteArrayInputStream
The index of the next character to read from the input stream buffer.

print(boolean) - Method in class java.io.PrintStream
Print a boolean value.

print(char) - Method in class java.io.PrintStream
Print a character.

print(char[]) - Method in class java.io.PrintStream
Print an array of characters.

print(int) - Method in class java.io.PrintStream
Print an integer.

print(long) - Method in class java.io.PrintStream
Print a long integer.

print(Object) - Method in class java.io.PrintStream
Print an object.

print(String) - Method in class java.io.PrintStream
Print a string.

println() - Method in class java.io.PrintStream
Terminate the current line by writing the line separator string.

println(boolean) - Method in class java.io.PrintStream
Print a boolean and then terminate the line.

println(char) - Method in class java.io.PrintStream
Print a character and then terminate the line.

println(char[]) - Method in class java.io.PrintStream
Print an array of characters and then terminate the line.

println(int) - Method in class java.io.PrintStream
Print an integer and then terminate the line.

println(long) - Method in class java.io.PrintStream
Print a long and then terminate the line.

println(Object) - Method in class java.io.PrintStream
Print an Object and then terminate the line.

println(String) - Method in class java.io.PrintStream
Print a String and then terminate the line.

printStackTrace() - Method in class java.lang.Throwable

PrintStream - class java.io.PrintStream.
A PrintStream adds functionality to another output stream, namely the ability to print
representations of various data values conveniently.

PrintStream(OutputStream) - Constructor for class java.io.PrintStream
Create a new print stream.

push(Object) - Method in class java.util.Stack
Pushes an item onto the top of this stack.

put(Object, Object) - Method in class java.util.Hashtable
Maps the specified key to the specified value in this hashtable.

R
Random - class java.util.Random.

An instance of this class is used to generate a stream of pseudorandom numbers.

338 CLDC Library API (beta 2)

CLDC Library API (beta 2)

Random() - Constructor for class java.util.Random
Creates a new random number generator.

Random(long) - Constructor for class java.util.Random
Creates a new random number generator using a single long seed: public Random(long seed) {
setSeed(seed); } Used by method next to hold the state of the pseudorandom number generator.

READ - Static variable in class javax.microedition.io.Connector
Access mode

READ_WRITE - Static variable in class javax.microedition.io.Connector
Access mode

read() - Method in class java.io.Reader
Read a single character.

read() - Method in class java.io.InputStreamReader
Read a single character.

read() - Method in class java.io.InputStream
Reads the next byte of data from the input stream.

read() - Method in class java.io.ByteArrayInputStream
Reads the next byte of data from this input stream.

read() - Method in class java.io.DataInputStream
Reads the next byte of data from this input stream.

read(byte[]) - Method in class java.io.InputStream
Reads some number of bytes from the input stream and stores them into the buffer array b.

read(byte[], int, int) - Method in class java.io.InputStream
Reads up to len bytes of data from the input stream into an array of bytes.

read(byte[], int, int) - Method in class java.io.ByteArrayInputStream
Reads up to len bytes of data into an array of bytes from this input stream.

read(byte[], int, int) - Method in class java.io.DataInputStream
Reads up to len bytes of data from this input stream into an array of bytes.

read(char[]) - Method in class java.io.Reader
Read characters into an array.

read(char[], int, int) - Method in class java.io.Reader
Read characters into a portion of an array.

read(char[], int, int) - Method in class java.io.InputStreamReader
Read characters into a portion of an array.

readBoolean() - Method in class java.io.DataInputStream
See the general contract of the readBoolean method of DataInput.

readBoolean() - Method in interface java.io.DataInput
Reads one input byte and returns true if that byte is nonzero, false if that byte is zero.

readByte() - Method in class java.io.DataInputStream
See the general contract of the readByte method of DataInput.

readByte() - Method in interface java.io.DataInput
Reads and returns one input byte.

readChar() - Method in class java.io.DataInputStream
See the general contract of the readChar method of DataInput.

readChar() - Method in interface java.io.DataInput
Reads an input char and returns the char value.

Reader - class java.io.Reader.
Abstract class for reading character streams.

Reader() - Constructor for class java.io.Reader
Create a new character-stream reader whose critical sections will synchronize on the reader itself.

CLDC Library API (beta 2) 339

CLDC Library API (beta 2)

Reader(Object) - Constructor for class java.io.Reader
Create a new character-stream reader whose critical sections will synchronize on the given object.

readFully(byte[]) - Method in class java.io.DataInputStream
See the general contract of the readFully method of DataInput.

readFully(byte[]) - Method in interface java.io.DataInput
Reads some bytes from an input stream and stores them into the buffer array b.

readFully(byte[], int, int) - Method in class java.io.DataInputStream
See the general contract of the readFully method of DataInput.

readFully(byte[], int, int) - Method in interface java.io.DataInput
Reads len bytes from an input stream.

readInt() - Method in class java.io.DataInputStream
See the general contract of the readInt method of DataInput.

readInt() - Method in interface java.io.DataInput
Reads four input bytes and returns an int value.

readLong() - Method in class java.io.DataInputStream
See the general contract of the readLong method of DataInput.

readLong() - Method in interface java.io.DataInput
Reads eight input bytes and returns a long value.

readShort() - Method in class java.io.DataInputStream
See the general contract of the readShort method of DataInput.

readShort() - Method in interface java.io.DataInput
Reads two input bytes and returns a short value.

readUnsignedByte() - Method in class java.io.DataInputStream
See the general contract of the readUnsignedByte method of DataInput.

readUnsignedByte() - Method in interface java.io.DataInput
Reads one input byte, zero-extends it to type int, and returns the result, which is therefore in the
range 0 through 255.

readUnsignedShort() - Method in class java.io.DataInputStream
See the general contract of the readUnsignedShort method of DataInput.

readUnsignedShort() - Method in interface java.io.DataInput
Reads two input bytes and returns an int value in the range 0 through 65535.

readUTF() - Method in class java.io.DataInputStream
See the general contract of the readUTF method of DataInput.

readUTF() - Method in interface java.io.DataInput
Reads in a string that has been encoded using a modified UTF-8 format.

readUTF(DataInput) - Static method in class java.io.DataInputStream
Reads from the stream in a representation of a Unicode character string encoded in Java
modified UTF-8 format; this string of characters is then returned as a String.

ready() - Method in class java.io.Reader
Tell whether this stream is ready to be read.

ready() - Method in class java.io.InputStreamReader
Tell whether this stream is ready to be read.

receive(Datagram) - Method in interface javax.microedition.io.DatagramConnection
Receive a datagram

regionMatches(boolean, int, String, int, int) - Method in class java.lang.String
Tests if two string regions are equal.

rehash() - Method in class java.util.Hashtable
Rehashes the contents of the hashtable into a hashtable with a larger capacity.

remove(Object) - Method in class java.util.Hashtable
Removes the key (and its corresponding value) from this hashtable.

340 CLDC Library API (beta 2)

CLDC Library API (beta 2)

removeAllElements() - Method in class java.util.Vector
Removes all components from this vector and sets its size to zero.

removeElement(Object) - Method in class java.util.Vector
Removes the first occurrence of the argument from this vector.

removeElementAt(int) - Method in class java.util.Vector
Deletes the component at the specified index.

replace(char, char) - Method in class java.lang.String
Returns a new string resulting from replacing all occurrences of oldChar in this string with
newChar.

reset() - Method in class java.io.Reader
Reset the stream.

reset() - Method in class java.io.InputStreamReader
Reset the stream.

reset() - Method in class java.io.InputStream
Repositions this stream to the position at the time the mark method was last called on this input
stream.

reset() - Method in class java.io.ByteArrayInputStream
Resets the buffer to the marked position.

reset() - Method in class java.io.DataInputStream
Repositions this stream to the position at the time the mark method was last called on this input
stream.

reset() - Method in class java.io.ByteArrayOutputStream
Resets the count field of this byte array output stream to zero, so that all currently accumulated
output in the output stream is discarded.

reset() - Method in interface javax.microedition.io.Datagram
Reset the read/write pointer and zeros the offset and length parameters.

reverse() - Method in class java.lang.StringBuffer
The character sequence contained in this string buffer is replaced by the reverse of the sequence.

run() - Method in interface java.lang.Runnable
When an object implementing interface Runnable is used to create a thread, starting the thread
causes the object’s run method to be called in that separately executing thread.

run() - Method in class java.lang.Thread
If this thread was constructed using a separate Runnable run object, then that Runnable
object’s run method is called; otherwise, this method does nothing and returns.

Runnable - interface java.lang.Runnable.
The Runnable interface should be implemented by any class whose instances are intended to be
executed by a thread.

Runtime - class java.lang.Runtime.
Every Java application has a single instance of class Runtime that allows the application to
interface with the environment in which the application is running.

RuntimeException - exception java.lang.RuntimeException.
RuntimeException is the superclass of those exceptions that can be thrown during the
normal operation of the Java Virtual Machine.

RuntimeException() - Constructor for class java.lang.RuntimeException
Constructs a RuntimeException with no detail message.

RuntimeException(String) - Constructor for class java.lang.RuntimeException
Constructs a RuntimeException with the specified detail message.

CLDC Library API (beta 2) 341

CLDC Library API (beta 2)

S
SATURDAY - Static variable in class java.util.Calendar

Value of the DAY_OF_WEEK field indicating Saturday.
search(Object) - Method in class java.util.Stack

Returns the 1-based position where an object is on this stack.
SECOND - Static variable in class java.util.Calendar

Field number for get and set indicating the second within the minute.
SecurityException - exception java.lang.SecurityException.

Thrown by the security manager to indicate a security violation.
SecurityException() - Constructor for class java.lang.SecurityException

Constructs a SecurityException with no detail message.
SecurityException(String) - Constructor for class java.lang.SecurityException

Constructs a SecurityException with the specified detail message.
send(Datagram) - Method in interface javax.microedition.io.DatagramConnection

Send a datagram
SEPTEMBER - Static variable in class java.util.Calendar

Value of the MONTH field indicating the ninth month of the year.
set(int, int) - Method in class java.util.Calendar

Sets the time field with the given value.
setAddress(Datagram) - Method in interface javax.microedition.io.Datagram

Set datagram address, copying the address from another datagram.
setAddress(String) - Method in interface javax.microedition.io.Datagram

Set datagram address.
setCharAt(int, char) - Method in class java.lang.StringBuffer

The character at the specified index of this string buffer is set to ch.
setData(byte[], int, int) - Method in interface javax.microedition.io.Datagram

Set the buffer, offset and length
setElementAt(Object, int) - Method in class java.util.Vector

Sets the component at the specified index of this vector to be the specified object.
setError() - Method in class java.io.PrintStream

Set the error state of the stream to true.
setLength(int) - Method in class java.lang.StringBuffer

Sets the length of this String buffer.
setLength(int) - Method in interface javax.microedition.io.Datagram

Set the length
setPriority(int) - Method in class java.lang.Thread

Changes the priority of this thread.
setSeed(long) - Method in class java.util.Random

Sets the seed of this random number generator using a single long seed.
setSize(int) - Method in class java.util.Vector

Sets the size of this vector.
setTime(Date) - Method in class java.util.Calendar

Sets this Calendar’s current time with the given Date.
setTime(long) - Method in class java.util.Date

Sets this Date object to represent a point in time that is time milliseconds after January 1, 1970
00:00:00 GMT.

setTimeInMillis(long) - Method in class java.util.Calendar
Sets this Calendar’s current time from the given long value.

342 CLDC Library API (beta 2)

CLDC Library API (beta 2)

setTimeZone(TimeZone) - Method in class java.util.Calendar
Sets the time zone with the given time zone value.

Short - class java.lang.Short.
The Short class is the standard wrapper for short values.

Short(short) - Constructor for class java.lang.Short
Constructs a Short object initialized to the specified short value.

shortValue() - Method in class java.lang.Integer
Returns the value of this Integer as a short.

shortValue() - Method in class java.lang.Short
Returns the value of this Short as a short.

size() - Method in class java.io.ByteArrayOutputStream
Returns the current size of the buffer.

size() - Method in class java.util.Vector
Returns the number of components in this vector.

size() - Method in class java.util.Hashtable
Returns the number of keys in this hashtable.

skip(long) - Method in class java.io.Reader
Skip characters.

skip(long) - Method in class java.io.InputStreamReader
Skip characters.

skip(long) - Method in class java.io.InputStream
Skips over and discards n bytes of data from this input stream.

skip(long) - Method in class java.io.ByteArrayInputStream
Skips n bytes of input from this input stream.

skip(long) - Method in class java.io.DataInputStream
Skips over and discards n bytes of data from the input stream.

skipBytes(int) - Method in class java.io.DataInputStream
See the general contract of the skipBytes method of DataInput.

skipBytes(int) - Method in interface java.io.DataInput
Makes an attempt to skip over n bytes of data from the input stream, discarding the skipped bytes.

sleep(long) - Static method in class java.lang.Thread
Causes the currently executing thread to sleep (temporarily cease execution) for the specified
number of milliseconds.

Stack - class java.util.Stack.
The Stack class represents a last-in-first-out (LIFO) stack of objects.

Stack() - Constructor for class java.util.Stack
Creates an empty Stack.

start() - Method in class java.lang.Thread
Causes this thread to begin execution; the Java Virtual Machine calls the run method of this
thread.

startsWith(String) - Method in class java.lang.String
Tests if this string starts with the specified prefix.

startsWith(String, int) - Method in class java.lang.String
Tests if this string starts with the specified prefix beginning a specified index.

StreamConnection - interface javax.microedition.io.StreamConnection.
This interface defines the capabilities that a stream connection must have.

StreamConnectionNotifier - interface javax.microedition.io.StreamConnectionNotifier.
This interface defines the capabilities that a connection notifier must have.

String - class java.lang.String.
The String class represents character strings.

CLDC Library API (beta 2) 343

CLDC Library API (beta 2)

String() - Constructor for class java.lang.String
Initializes a newly created String object so that it represents an empty character sequence.

String(byte[]) - Constructor for class java.lang.String
Construct a new String by converting the specified array of bytes using the platform’s default
character encoding.

String(byte[], int, int) - Constructor for class java.lang.String
Construct a new String by converting the specified subarray of bytes using the platform’s
default character encoding.

String(byte[], int, int, String) - Constructor for class java.lang.String
Construct a new String by converting the specified subarray of bytes using the specified
character encoding.

String(byte[], String) - Constructor for class java.lang.String
Construct a new String by converting the specified array of bytes using the specified character
encoding.

String(char[]) - Constructor for class java.lang.String
Allocates a new String so that it represents the sequence of characters currently contained in
the character array argument.

String(char[], int, int) - Constructor for class java.lang.String
Allocates a new String that contains characters from a subarray of the character array
argument.

String(String) - Constructor for class java.lang.String
Initializes a newly created String object so that it represents the same sequence of characters as
the argument; in other words, the newly created string is a copy of the argument string.

String(StringBuffer) - Constructor for class java.lang.String
Allocates a new string that contains the sequence of characters currently contained in the string
buffer argument.

StringBuffer - class java.lang.StringBuffer.
A string buffer implements a mutable sequence of characters.

StringBuffer() - Constructor for class java.lang.StringBuffer
Constructs a string buffer with no characters in it and an initial capacity of 16 characters.

StringBuffer(int) - Constructor for class java.lang.StringBuffer
Constructs a string buffer with no characters in it and an initial capacity specified by the length
argument.

StringBuffer(String) - Constructor for class java.lang.StringBuffer
Constructs a string buffer so that it represents the same sequence of characters as the string
argument; in other words, the initial contents of the string buffer is a copy of the argument string.

StringIndexOutOfBoundsException - exception java.lang.StringIndexOutOfBoundsException.
Thrown by the charAt method in class String and by other String methods to indicate that
an index is either negative or greater than or equal to the size of the string.

StringIndexOutOfBoundsException() - Constructor for class
java.lang.StringIndexOutOfBoundsException

Constructs a StringIndexOutOfBoundsException with no detail message.
StringIndexOutOfBoundsException(int) - Constructor for class
java.lang.StringIndexOutOfBoundsException

Constructs a new StringIndexOutOfBoundsException class with an argument
indicating the illegal index.

StringIndexOutOfBoundsException(String) - Constructor for class
java.lang.StringIndexOutOfBoundsException

Constructs a StringIndexOutOfBoundsException with the specified detail message.

344 CLDC Library API (beta 2)

CLDC Library API (beta 2)

substring(int) - Method in class java.lang.String
Returns a new string that is a substring of this string.

substring(int, int) - Method in class java.lang.String
Returns a new string that is a substring of this string.

SUNDAY - Static variable in class java.util.Calendar
Value of the DAY_OF_WEEK field indicating Sunday.

System - class java.lang.System.
The System class contains several useful class fields and methods.

T
Thread - class java.lang.Thread.

A thread is a thread of execution in a program.
Thread() - Constructor for class java.lang.Thread

Allocates a new Thread object.
Thread(Runnable) - Constructor for class java.lang.Thread

Allocates a new Thread object.
Throwable - class java.lang.Throwable.

The Throwable class is the superclass of all errors and exceptions in the Java language.
Throwable() - Constructor for class java.lang.Throwable

Constructs a new Throwable with null as its error message string.
Throwable(String) - Constructor for class java.lang.Throwable

Constructs a new Throwable with the specified error message.
THURSDAY - Static variable in class java.util.Calendar

Value of the DAY_OF_WEEK field indicating Thursday.
TimeZone - class java.util.TimeZone.

TimeZone represents a time zone offset, and also figures out daylight savings.
TimeZone() - Constructor for class java.util.TimeZone

toBinaryString(int) - Static method in class java.lang.Integer

Creates a string representation of the integer argument as an unsigned integer in base 2.
toByteArray() - Method in class java.io.ByteArrayOutputStream

Creates a newly allocated byte array.
toCharArray() - Method in class java.lang.String

Converts this string to a new character array.
toHexString(int) - Static method in class java.lang.Integer

Creates a string representation of the integer argument as an unsigned integer in base 16.
toLowerCase() - Method in class java.lang.String

Converts all of the characters in this String to lower case.
toLowerCase(char) - Static method in class java.lang.Character

The given character is mapped to its lowercase equivalent; if the character has no lowercase
equivalent, the character itself is returned.

toOctalString(int) - Static method in class java.lang.Integer
Creates a string representation of the integer argument as an unsigned integer in base 8.

toString() - Method in class java.lang.Object
Returns a string representation of the object.

toString() - Method in class java.lang.Throwable
Returns a short description of this throwable object.

CLDC Library API (beta 2) 345

CLDC Library API (beta 2)

toString() - Method in class java.lang.Character
Returns a String object representing this character’s value.

toString() - Method in class java.lang.Long
Returns a String object representing this Long’s value.

toString() - Method in class java.lang.Class
Converts the object to a string.

toString() - Method in class java.lang.Integer
Returns a String object representing this Integer’s value.

toString() - Method in class java.lang.StringBuffer
Converts to a string representing the data in this string buffer.

toString() - Method in class java.lang.String
This object (which is already a string!) is itself returned.

toString() - Method in class java.lang.Thread
Returns a string representation of this thread, including a unique number that identifies the thread
and the thread’s priority.

toString() - Method in class java.util.Vector
Returns a string representation of this vector.

toString() - Method in class java.util.Hashtable
Returns a rather long string representation of this hashtable.

toString(int) - Static method in class java.lang.Integer
Returns a new String object representing the specified integer.

toString(int, int) - Static method in class java.lang.Integer
Creates a string representation of the first argument in the radix specified by the second argument.

toString(long) - Static method in class java.lang.Long
Returns a new String object representing the specified integer.

toString(long, int) - Static method in class java.lang.Long
Creates a string representation of the first argument in the radix specified by the second argument.

totalMemory() - Method in class java.lang.Runtime
Returns the total amount of memory in the Java Virtual Machine.

toUpperCase() - Method in class java.lang.String
Converts all of the characters in this String to lower case.

toUpperCase(char) - Static method in class java.lang.Character
Converts the character argument to uppercase; if the character has no lowercase equivalent, the
character itself is returned.

trimToSize() - Method in class java.util.Vector
Trims the capacity of this vector to be the vector’s current size.

TUESDAY - Static variable in class java.util.Calendar
Value of the DAY_OF_WEEK field indicating Tuesday.

U
UnsupportedEncodingException - exception java.io.UnsupportedEncodingException.

The Character Encoding is not supported.
UnsupportedEncodingException() - Constructor for class java.io.UnsupportedEncodingException

Constructs an UnsupportedEncodingException without a detail message.
UnsupportedEncodingException(String) - Constructor for class
java.io.UnsupportedEncodingException

Constructs an UnsupportedEncodingException with a detail message.

346 CLDC Library API (beta 2)

CLDC Library API (beta 2)

useDaylightTime() - Method in class java.util.TimeZone
Queries if this time zone uses Daylight Savings Time.

UTFDataFormatException - exception java.io.UTFDataFormatException.
Signals that a malformed UTF-8 string has been read in a data input stream or by any class that
implements the data input interface.

UTFDataFormatException() - Constructor for class java.io.UTFDataFormatException
Constructs a UTFDataFormatException with null as its error detail message.

UTFDataFormatException(String) - Constructor for class java.io.UTFDataFormatException
Constructs a UTFDataFormatException with the specified detail message.

V
valueOf(boolean) - Static method in class java.lang.String

Returns the string representation of the boolean argument.
valueOf(char) - Static method in class java.lang.String

Returns the string representation of the char argument.
valueOf(char[]) - Static method in class java.lang.String

Returns the string representation of the char array argument.
valueOf(char[], int, int) - Static method in class java.lang.String

Returns the string representation of a specific subarray of the char array argument.
valueOf(int) - Static method in class java.lang.String

Returns the string representation of the int argument.
valueOf(long) - Static method in class java.lang.String

Returns the string representation of the long argument.
valueOf(Object) - Static method in class java.lang.String

Returns the string representation of the Object argument.
valueOf(String) - Static method in class java.lang.Integer

Returns a new Integer object initialized to the value of the specified String.
valueOf(String, int) - Static method in class java.lang.Integer

Returns a new Integer object initialized to the value of the specified String.
Vector - class java.util.Vector.

The Vector class implements a growable array of objects.
Vector() - Constructor for class java.util.Vector

Constructs an empty vector.
Vector(int) - Constructor for class java.util.Vector

Constructs an empty vector with the specified initial capacity.
Vector(int, int) - Constructor for class java.util.Vector

Constructs an empty vector with the specified initial capacity and capacity increment.
VirtualMachineError - error java.lang.VirtualMachineError.

Thrown to indicate that the Java Virtual Machine is broken or has run out of resources necessary
for it to continue operating.

VirtualMachineError() - Constructor for class java.lang.VirtualMachineError
Constructs a VirtualMachineError with no detail message.

VirtualMachineError(String) - Constructor for class java.lang.VirtualMachineError
Constructs a VirtualMachineError with the specified detail message.

CLDC Library API (beta 2) 347

CLDC Library API (beta 2)

W
wait() - Method in class java.lang.Object

Causes current thread to wait until another thread invokes the Object.notify() method or
the Object.notifyAll() method for this object.

wait(long) - Method in class java.lang.Object
Causes current thread to wait until either another thread invokes the Object.notify()
method or the Object.notifyAll() method for this object, or a specified amount of time
has elapsed.

wait(long, int) - Method in class java.lang.Object
Causes current thread to wait until another thread invokes the Object.notify() method or
the Object.notifyAll() method for this object, or some other thread interrupts the current
thread, or a certain amount of real time has elapsed.

WEDNESDAY - Static variable in class java.util.Calendar
Value of the DAY_OF_WEEK field indicating Wednesday.

WRITE - Static variable in class javax.microedition.io.Connector
Access mode

write(byte[]) - Method in class java.io.OutputStream
Writes b.length bytes from the specified byte array to this output stream.

write(byte[]) - Method in interface java.io.DataOutput
Writes to the output stream all the bytes in array b.

write(byte[], int, int) - Method in class java.io.OutputStream
Writes len bytes from the specified byte array starting at offset off to this output stream.

write(byte[], int, int) - Method in class java.io.DataOutputStream
Writes len bytes from the specified byte array starting at offset off to the underlying output
stream.

write(byte[], int, int) - Method in class java.io.ByteArrayOutputStream
Writes len bytes from the specified byte array starting at offset off to this byte array output
stream.

write(byte[], int, int) - Method in class java.io.PrintStream
Write len bytes from the specified byte array starting at offset off to this stream.

write(byte[], int, int) - Method in interface java.io.DataOutput
Writes len bytes from array b, in order, to the output stream.

write(char[]) - Method in class java.io.Writer
Write an array of characters.

write(char[], int, int) - Method in class java.io.Writer
Write a portion of an array of characters.

write(char[], int, int) - Method in class java.io.OutputStreamWriter
Write a portion of an array of characters.

write(int) - Method in class java.io.OutputStream
Writes the specified byte to this output stream.

write(int) - Method in class java.io.DataOutputStream
Writes the specified byte (the low eight bits of the argument b) to the underlying output stream.

write(int) - Method in class java.io.Writer
Write a single character.

write(int) - Method in class java.io.OutputStreamWriter
Write a single character.

write(int) - Method in class java.io.ByteArrayOutputStream
Writes the specified byte to this byte array output stream.

348 CLDC Library API (beta 2)

CLDC Library API (beta 2)

write(int) - Method in class java.io.PrintStream
Write the specified byte to this stream.

write(int) - Method in interface java.io.DataOutput
Writes to the output stream the eight low-order bits of the argument b.

write(String) - Method in class java.io.Writer
Write a string.

write(String, int, int) - Method in class java.io.Writer
Write a portion of a string.

write(String, int, int) - Method in class java.io.OutputStreamWriter
Write a portion of a string.

writeBoolean(boolean) - Method in class java.io.DataOutputStream
Writes a boolean to the underlying output stream as a 1-byte value.

writeBoolean(boolean) - Method in interface java.io.DataOutput
Writes a boolean value to this output stream.

writeByte(int) - Method in class java.io.DataOutputStream
Writes out a byte to the underlying output stream as a 1-byte value.

writeByte(int) - Method in interface java.io.DataOutput
Writes to the output stream the eight low- order bits of the argument v.

writeChar(int) - Method in class java.io.DataOutputStream
Writes a char to the underlying output stream as a 2-byte value, high byte first.

writeChar(int) - Method in interface java.io.DataOutput
Writes a char value, which is comprised of two bytes, to the output stream.

writeChars(String) - Method in class java.io.DataOutputStream
Writes a string to the underlying output stream as a sequence of characters.

writeChars(String) - Method in interface java.io.DataOutput
Writes every character in the string s, to the output stream, in order, two bytes per character.

writeInt(int) - Method in class java.io.DataOutputStream
Writes an int to the underlying output stream as four bytes, high byte first.

writeInt(int) - Method in interface java.io.DataOutput
Writes an int value, which is comprised of four bytes, to the output stream.

writeLong(long) - Method in class java.io.DataOutputStream
Writes a long to the underlying output stream as eight bytes, high byte first.

writeLong(long) - Method in interface java.io.DataOutput
Writes an long value, which is comprised of four bytes, to the output stream.

Writer - class java.io.Writer.
Abstract class for writing to character streams.

Writer() - Constructor for class java.io.Writer
Create a new character-stream writer whose critical sections will synchronize on the writer itself.

Writer(Object) - Constructor for class java.io.Writer
Create a new character-stream writer whose critical sections will synchronize on the given object.

writeShort(int) - Method in class java.io.DataOutputStream
Writes a short to the underlying output stream as two bytes, high byte first.

writeShort(int) - Method in interface java.io.DataOutput
Writes two bytes to the output stream to represent the value of the argument.

writeUTF(String) - Method in class java.io.DataOutputStream
Writes a string to the underlying output stream using UTF-8 encoding in a machine-independent
manner.

writeUTF(String) - Method in interface java.io.DataOutput
Writes two bytes of length information to the output stream, followed by the Java modified UTF
representation of every character in the string s.

CLDC Library API (beta 2) 349

CLDC Library API (beta 2)

Y
YEAR - Static variable in class java.util.Calendar

Field number for get and set indicating the year.
yield() - Static method in class java.lang.Thread

Causes the currently executing thread object to temporarily pause and allow other threads to
execute.

A B C D E F G H I J K L M N O P R S T U V W Y

Overview Package Class Tree Deprecated Index Help
 PREV NEXT FRAMES NO FRAMES

350 CLDC Library API (beta 2)

CLDC Library API (beta 2)

	
	Package java.lang

	
	java.lang Class ArithmeticException
	ArithmeticException
	ArithmeticException

	
	java.lang Class ArrayIndexOutOfBoundsException
	ArrayIndexOutOfBoundsException
	ArrayIndexOutOfBoundsException
	ArrayIndexOutOfBoundsException

	
	java.lang Class ArrayStoreException
	ArrayStoreException
	ArrayStoreException

	
	java.lang Class Boolean
	Boolean
	booleanValue
	hashCode
	equals

	
	java.lang Class Byte
	MIN_VALUE
	MAX_VALUE
	Byte
	byteValue
	hashCode
	equals

	
	java.lang Class Character
	MIN_RADIX
	MAX_RADIX
	MIN_VALUE
	MAX_VALUE
	Character
	charValue
	hashCode
	equals
	toString
	isLowerCase
	isUpperCase
	isDigit
	toLowerCase
	toUpperCase
	digit

	
	java.lang Class Class
	toString
	forName
	newInstance
	isInstance
	isAssignableFrom
	isInterface
	isArray
	getName
	getResourceAsStream

	
	java.lang Class ClassCastException
	ClassCastException
	ClassCastException

	
	java.lang Class ClassNotFoundException
	ClassNotFoundException
	ClassNotFoundException

	
	java.lang Class Error
	Error
	Error

	
	java.lang Class Exception
	Exception
	Exception

	
	java.lang Class IllegalAccessException
	IllegalAccessException
	IllegalAccessException

	
	java.lang Class IllegalArgumentException
	IllegalArgumentException
	IllegalArgumentException

	
	java.lang Class IllegalMonitorStateException
	IllegalMonitorStateException
	IllegalMonitorStateException

	
	java.lang Class IllegalThreadStateException
	IllegalThreadStateException
	IllegalThreadStateException

	
	java.lang Class IndexOutOfBoundsException
	IndexOutOfBoundsException
	IndexOutOfBoundsException

	
	java.lang Class InstantiationException
	InstantiationException
	InstantiationException

	
	java.lang Class Integer
	MIN_VALUE
	MAX_VALUE
	Integer
	toString
	toHexString
	toOctalString
	toBinaryString
	toString
	parseInt
	parseInt
	valueOf
	valueOf
	byteValue
	shortValue
	intValue
	longValue
	toString
	hashCode
	equals

	
	java.lang Class InterruptedException
	InterruptedException
	InterruptedException

	
	java.lang Class Long
	MIN_VALUE
	MAX_VALUE
	Long
	toString
	toString
	longValue
	toString
	hashCode
	equals

	
	java.lang Class Math
	abs
	abs
	max
	max
	min
	min

	
	java.lang Class NegativeArraySizeException
	NegativeArraySizeException
	NegativeArraySizeException

	
	java.lang Class NullPointerException
	NullPointerException
	NullPointerException

	
	java.lang Class NumberFormatException
	NumberFormatException
	NumberFormatException

	
	java.lang Class Object
	Object
	getClass
	hashCode
	equals
	toString
	notify
	notifyAll
	wait
	wait
	wait

	
	java.lang Class OutOfMemoryError
	OutOfMemoryError
	OutOfMemoryError

	
	java.lang Interface Runnable
	run

	
	java.lang Class Runtime
	getRuntime
	exit
	freeMemory
	totalMemory
	gc

	
	java.lang Class RuntimeException
	RuntimeException
	RuntimeException

	
	java.lang Class SecurityException
	SecurityException
	SecurityException

	
	java.lang Class Short
	MIN_VALUE
	MAX_VALUE
	Short
	shortValue
	hashCode
	equals

	
	java.lang Class String
	String
	String
	String
	String
	String
	String
	String
	String
	String
	length
	charAt
	getChars
	getBytes
	getBytes
	equals
	equalsIgnoreCase
	compareTo
	regionMatches
	startsWith
	startsWith
	endsWith
	hashCode
	indexOf
	indexOf
	lastIndexOf
	lastIndexOf
	substring
	substring
	concat
	replace
	toLowerCase
	toUpperCase
	toString
	toCharArray
	valueOf
	valueOf
	valueOf
	valueOf
	valueOf
	valueOf
	valueOf

	
	java.lang Class StringBuffer
	StringBuffer
	StringBuffer
	StringBuffer
	length
	capacity
	ensureCapacity
	setLength
	charAt
	getChars
	setCharAt
	append
	append
	append
	append
	append
	append
	append
	append
	delete
	deleteCharAt
	insert
	insert
	insert
	insert
	insert
	insert
	insert
	reverse
	toString

	
	java.lang Class StringIndexOutOfBoundsException
	StringIndexOutOfBoundsException
	StringIndexOutOfBoundsException
	StringIndexOutOfBoundsException

	
	java.lang Class System
	out
	err
	currentTimeMillis
	arraycopy
	identityHashCode
	getProperty
	exit
	gc

	
	java.lang Class Thread
	MIN_PRIORITY
	NORM_PRIORITY
	MAX_PRIORITY
	Thread
	Thread
	currentThread
	yield
	sleep
	start
	run
	isAlive
	setPriority
	getPriority
	activeCount
	join
	toString

	
	java.lang Class Throwable
	Throwable
	Throwable
	getMessage
	toString
	printStackTrace

	
	java.lang Class VirtualMachineError
	VirtualMachineError
	VirtualMachineError

	
	Package java.io

	
	java.io Class ByteArrayInputStream
	buf
	pos
	mark
	count
	ByteArrayInputStream
	ByteArrayInputStream
	read
	read
	skip
	available
	markSupported
	mark
	reset
	close

	
	java.io Class ByteArrayOutputStream
	buf
	count
	ByteArrayOutputStream
	ByteArrayOutputStream
	write
	write
	reset
	toByteArray
	size
	close

	
	java.io Interface DataInput
	readFully
	readFully
	skipBytes
	readBoolean
	readByte
	readUnsignedByte
	readShort
	readUnsignedShort
	readChar
	readInt
	readLong
	readUTF

	
	java.io Class DataInputStream
	in
	DataInputStream
	read
	read
	readFully
	readFully
	skipBytes
	readBoolean
	readByte
	readUnsignedByte
	readShort
	readUnsignedShort
	readChar
	readInt
	readLong
	readUTF
	readUTF
	skip
	available
	close
	mark
	reset
	markSupported

	
	java.io Interface DataOutput
	write
	write
	write
	writeBoolean
	writeByte
	writeShort
	writeChar
	writeInt
	writeLong
	writeChars
	writeUTF

	
	java.io Class DataOutputStream
	out
	DataOutputStream
	write
	write
	flush
	close
	writeBoolean
	writeByte
	writeShort
	writeChar
	writeInt
	writeLong
	writeChars
	writeUTF

	
	java.io Class EOFException
	EOFException
	EOFException

	
	java.io Class IOException
	IOException
	IOException

	
	java.io Class InputStream
	InputStream
	read
	read
	read
	skip
	available
	close
	mark
	reset
	markSupported

	
	java.io Class InputStreamReader
	in
	InputStreamReader
	InputStreamReader
	read
	read
	skip
	ready
	markSupported
	mark
	reset
	close

	
	java.io Class InterruptedIOException
	bytesTransferred
	InterruptedIOException
	InterruptedIOException

	
	java.io Class OutputStream
	OutputStream
	write
	write
	write
	flush
	close

	
	java.io Class OutputStreamWriter
	out
	OutputStreamWriter
	OutputStreamWriter
	write
	write
	write
	flush
	close

	
	java.io Class PrintStream
	PrintStream
	flush
	close
	checkError
	setError
	write
	write
	print
	print
	print
	print
	print
	print
	print
	println
	println
	println
	println
	println
	println
	println
	println

	
	java.io Class Reader
	lock
	Reader
	Reader
	read
	read
	read
	skip
	ready
	markSupported
	mark
	reset
	close

	
	java.io Class UTFDataFormatException
	UTFDataFormatException
	UTFDataFormatException

	
	java.io Class UnsupportedEncodingException
	UnsupportedEncodingException
	UnsupportedEncodingException

	
	java.io Class Writer
	lock
	Writer
	Writer
	write
	write
	write
	write
	write
	flush
	close

	
	Package java.util

	
	java.util Class Calendar
	YEAR
	MONTH
	DATE
	DAY_OF_MONTH
	DAY_OF_WEEK
	HOUR_OF_DAY
	MINUTE
	SECOND
	MILLISECOND
	SUNDAY
	MONDAY
	TUESDAY
	WEDNESDAY
	THURSDAY
	FRIDAY
	SATURDAY
	JANUARY
	FEBRUARY
	MARCH
	APRIL
	MAY
	JUNE
	JULY
	AUGUST
	SEPTEMBER
	OCTOBER
	NOVEMBER
	DECEMBER
	Calendar
	getTime
	setTime
	getInstance
	getInstance
	getTimeInMillis
	setTimeInMillis
	get
	set
	equals
	before
	after
	setTimeZone
	getTimeZone

	
	java.util Class Date
	Date
	Date
	getTime
	setTime
	equals
	hashCode

	
	java.util Class EmptyStackException
	EmptyStackException

	
	java.util Interface Enumeration
	hasMoreElements
	nextElement

	
	java.util Class Hashtable
	Hashtable
	Hashtable
	size
	isEmpty
	keys
	elements
	contains
	containsKey
	get
	rehash
	put
	remove
	clear
	toString

	
	java.util Class NoSuchElementException
	NoSuchElementException
	NoSuchElementException

	
	java.util Class Random
	Random
	Random
	setSeed
	next
	nextInt
	nextLong

	
	java.util Class Stack
	Stack
	push
	pop
	peek
	empty
	search

	
	java.util Class TimeZone
	TimeZone
	getOffset
	getRawOffset
	useDaylightTime
	getID
	getTimeZone
	getDefault
	getAvailableIDs

	
	java.util Class Vector
	elementData
	elementCount
	capacityIncrement
	Vector
	Vector
	Vector
	copyInto
	trimToSize
	ensureCapacity
	setSize
	capacity
	size
	isEmpty
	elements
	contains
	indexOf
	indexOf
	lastIndexOf
	lastIndexOf
	elementAt
	firstElement
	lastElement
	setElementAt
	removeElementAt
	insertElementAt
	addElement
	removeElement
	removeAllElements
	toString

	
	Package javax.microedition.io

	
	javax.microedition.io Interface Connection
	close

	
	javax.microedition.io Class ConnectionNotFoundException
	ConnectionNotFoundException
	ConnectionNotFoundException

	
	javax.microedition.io Class Connector
	READ
	WRITE
	READ_WRITE
	open
	open
	open
	openDataInputStream
	openDataOutputStream
	openInputStream
	openOutputStream

	
	javax.microedition.io Interface ContentConnection
	getType
	getEncoding
	getLength

	
	javax.microedition.io Interface Datagram
	getAddress
	getData
	getLength
	getOffset
	setAddress
	setAddress
	setLength
	setData
	reset

	
	javax.microedition.io Interface DatagramConnection
	getMaximumLength
	getNominalLength
	send
	receive
	newDatagram
	newDatagram
	newDatagram
	newDatagram

	
	javax.microedition.io Interface InputConnection
	openInputStream
	openDataInputStream

	
	javax.microedition.io Interface OutputConnection
	openOutputStream
	openDataOutputStream

	
	javax.microedition.io Interface StreamConnection

	
	javax.microedition.io Interface StreamConnectionNotifier
	acceptAndOpen

	
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	Y

